Анализ разностной схемы для сингулярно возмущенной задачи Коши на сгущающейся сетке^{*}

А.И. Задорин, С.В. Тиховская

УДК 519.62

Задорин А.И., Тиховская С.В. Анализ разностной схемы для сингулярно возмущенной задачи Коши на сгущающейся сетке // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2011. — Т. 14, № 1. — С. 47–57.

Рассматривается задача Коши для сингулярно возмущенного обыкновенного дифференциального уравнения второго порядка. Обосновывается равномерная сходимость схемы направленных разностей на сетке, предложенной Г.И. Шишкиным. Использование данной сетки хорошо известно лишь в случае краевой задачи. Приводятся результаты численных экспериментов.

Ключевые слова: дифференциальное уравнение второго порядка, сингулярное возмущение, задача Коши, разностная схема, принцип максимума, сетка Шишкина, равномерная сходимость.

Zadorin A.I., Tikhovskaya S.V. Analysis of a difference scheme for a singularly perturbed Cauchy problem on a refined mesh // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2011. — Vol. 14, N° 1. — P. 47–57.

The Cauchy problem for a singularly perturbed second order ordinary differential equation is considered. The uniform convergence of the upwind difference scheme on the Shishkin mesh is proved. Note, that an application of such a mesh is well known only in the case of a boundary value problem. The results of numerical experiments are discussed.

Key words: second order ordinary differential equation, singular perturbation, Cauchy problem, difference scheme, maximum principle, Shishkin mesh, uniform convergence.

1. Введение

Вопросы построения и исследования разностных схем для сингулярно возмущенных краевых задач в случае обыкновенного дифференциального уравнения второго порядка исследованы в целом ряде работ, например [1–5]. В то же время интересен вопрос исследования разностных схем для таких уравнений в случае постановки начальных условий. В случае сингулярно возмущенной начальной задачи для уравнения первого порядка данный вопрос исследовался, например, в [6].

Итак, рассмотрим сингулярно возмущенную задачу Коши:

$$Lu(x) = \varepsilon u''(x) + a(x)u'(x) - b(x)u(x) = f(x), \quad 0 < x \le X,$$

$$u(0) = A, \quad u'(0) = \frac{B}{\varepsilon},$$
(1.1)

где А, В — некоторые постоянные. Предполагаем, что

 $0<\varepsilon\leqslant 1,\quad a(x)\geqslant\alpha>0,\quad \beta\geqslant b(x)\geqslant 0,\quad a,b,f\in C^2[0,1].$

^{*}Работа выполнена при финансовой поддержке гранта РФФИ (проект № 10-01-00726).

Г.И. Шишкиным в [3] для численного решения краевых сингулярно возмущенных задач предложена кусочно-равномерная сетка, мелкая в пограничном слое; доказано, что ряд классических разностных схем на такой сетке обладает свойством сходимости, равномерной по малому параметру. Целью данной работы является исследование вопроса равномерной сходимости схемы направленных разностей на такой сетке в случае начальной задачи (1.1). Как известно, в случае краевых задач для обоснования равномерной сходимости используется принцип максимума. В случае начальной задачи (1.1) будет предложена формулировка принципа максимума, на основе которой при некоторых ограничениях на коэффициенты задачи будет обоснована равномерная сходимость схемы направленных разностей.

Обозначения. Всюду в работе под C и C_i , $i \ge 0$, будем понимать положительные постоянные, не зависящие от ε и шагов сетки. Определим нормы функции непрерывного аргумента $||u|| = \max_{0 \le x \le X} |u(x)|$ и сеточной функции $||u^h||_h = \max_n |u^h_n|$. Пусть [u] проекция функции непрерывного аргумента u(x) на сетку.

2. Анализ дифференциальной задачи

Для задачи (1.1) сформулируем принцип максимума, в справедливости которого легко убедиться рассуждениями от противного.

Лемма 2.1. Пусть $\Psi(x) \in C^2[0,1]$. Тогда из условий

$$\Psi(0) \ge 0, \qquad \Psi'(0) \ge 0, \qquad L\Psi(x) \ge 0, \quad x \in [0, X],$$
(2.1)

следует, что $\Psi(x) \ge 0, x \in [0, X].$

Зададим

$$m_{ab} = \min_{0 \le x \le X} [a(x) - b(x)x].$$
(2.2)

Лемма 2.2. Пусть $m_{ab} > 0$. Тогда справедлива оценка устойчивости

$$|u(x)| \leq |A| + \frac{|B|}{\alpha} + \frac{X}{m_{ab}} \left(\beta|A| + \frac{\beta|B|}{\alpha} + ||f||\right), \quad 0 \leq x \leq X.$$

$$(2.3)$$

Доказательство. Определим

$$\Psi(x) = |A| + \frac{|B|}{\alpha} + \left(\beta|A| + \frac{\beta|B|}{\alpha} + ||f||\right) \frac{x}{m_{ab}} - \frac{|B|}{\alpha} e^{-\frac{\alpha x}{\varepsilon}} \pm u(x).$$

Несложно убедиться, что выполнены условия принципа максимума (2.1), в силу леммы 2.1, $\Psi(x) \ge 0$, $x \in [0, X]$, откуда следует утверждение леммы.

Оценим производные решения задачи (1.1).

Лемма 2.3. Пусть выполнено $m_{ab} > 0$. Тогда найдется постоянная C_0 :

$$|u^{(j)}(x)| \le C_0 \left(1 + \frac{1}{\varepsilon^j} e^{-\frac{\alpha x}{\varepsilon}} \right), \quad x \in [0, X], \quad j = 1, 2, 3.$$
(2.4)

Доказательство. Докажем утверждение леммы при *j* = 1. Уравнение (1.1) представим в виде

$$\left(\varepsilon u'(x)e^{\int\limits_0^x \frac{a(s)}{\varepsilon}ds}\right)' = (f(x) + b(x)u(x))e^{\int\limits_0^x \frac{a(s)}{\varepsilon}ds}.$$

Интегрируя это равенство от 0 до x и учитывая начальное условие, получим

$$u'(x) = \frac{B}{\varepsilon} e^{-\int_{0}^{x} \frac{a(s)}{\varepsilon} ds} + \frac{1}{\varepsilon} \int_{0}^{x} \left(f(s) + b(s)u(s)\right) e^{-\int_{s}^{x} \frac{a(t)}{\varepsilon} dt} ds.$$
(2.5)

В соответствии с (2.3) функция u(s) под интегралом в (2.5) ограничена. Следовательно,

$$|u'(x)| \leq \frac{|B|}{\varepsilon} e^{-\frac{\alpha x}{\varepsilon}} + \frac{C_1}{\varepsilon} \int_0^x e^{-\frac{\alpha}{\varepsilon}(x-s)} \, ds \leq \frac{|B|}{\varepsilon} e^{-\frac{\alpha x}{\varepsilon}} + \frac{C_1}{\alpha},$$

что доказывает (2.4) при j = 1.

Пусть j = 2. Учитывая уравнение (1.1), для некоторой постоянной C_2 получим $|u''(0)| \leq C_2/\varepsilon^2$. Дифференцируя уравнение (1.1), получим

$$\varepsilon u'''(x) + a(x)u''(x) = b'(x)u(x) + b(x)u'(x) + f'(x) - a'(x)u'(x).$$

Теперь по аналогии со случаем j = 1 получим представление вида (2.5) для производной u''(x), из которого следует оценка (2.4) при j = 2. Случай j = 3 рассматривается аналогично. Лемма доказана.

В соответствии с леммой 2.3 решение задачи Коши (1.1) при малых ε имеет погранслойный рост в окрестности начальной точки x = 0.

3. Построение и анализ разностной схемы

Для того, чтобы анализировать точность разностной схемы в случае задачи Коши, необходимо сформулировать некоторый аналог принципа максимума, который широко применяется для анализа точности разностных схем в случае краевой задачи.

Рассмотрим трехточечную разностную схему для задачи Коши:

$$L_n^h u^h = A_n u_{n-1}^h - B_n u_n^h + D_n u_{n+1}^h = F_n,$$

$$u_0^h = A, \quad \frac{u_1^h - u_0^h}{h} = G, \quad 1 \le n < N,$$
(3.1)

где N — число интервалов в общем случае неравномерной сетки Ω^h исходного интервала [0, X] и A, G — некоторые постоянные. Предполагаем, что $B_n \ge A_n + D_n, A_n > 0, D_n > 0.$

Принцип максимума для анализа разностных схем в случае краевых задач используется в ряде работ, например [7]. Сформулируем принцип максимума для начальной задачи (3.1).

Лемма 3.1. Из условий

$$\Psi_0^h \ge 0, \quad \Psi_1^h - \Psi_0^h \ge 0, \quad L_n^h \Psi^h \ge 0 \qquad \text{dag} \quad n = 1, 2, \dots, N - 1$$
(3.2)

credyem, umo $\Psi_n^h \ge 0, n = 0, 1, \dots, N.$

Доказательство. Пусть $\exists m : \Psi_m^h < 0$, тогда в некотором узле с номером $m_0 < m$ достигается положительный максимум сеточной функции Ψ^h , тогда

$$L_{m_0}^h \Psi^h = A_{m_0} (\Psi_{m_0-1}^h - \Psi_{m_0}^h) - (B_{m_0} - A_{m_0} - D_{m_0}) \Psi_{m_0}^h + D_{m_0} (\Psi_{m_0+1}^h - \Psi_{m_0}^h),$$

откуда, с учетом ограничений на коэффициенты разностной схемы, получим $L_{m_0}^h \Psi^h < 0$, что противоречит одному из условий леммы.

Покажем, что в случае произвольной равномерной сетки схема направленных разностей не обладает свойством сходимости при малых значениях параметра ε . Выпишем схему направленных разностей для задачи (1.1) в случае равномерной сетки

$$\varepsilon \frac{u_{n+1}^{h} - 2u_{n}^{h} + u_{n-1}^{h}}{h^{2}} + a_{n} \frac{u_{n+1}^{h} - u_{n}^{h}}{h} - b_{n} u_{n}^{h} = f_{n},$$

$$u_{0}^{h} = A, \qquad \frac{u_{1}^{h} - u_{0}^{h}}{h} = \frac{B}{\varepsilon}, \quad 0 < n < N,$$
(3.3)

где $a_n = a(x_n), b_n = b(x_n), f_n = f(x_n)$. Из начальных условий следует $u_1^h = A + Bh/\varepsilon$, поэтому решение схемы (3.3) не ограничено равномерно по параметру ε , в то время как решение задачи (1.1) равномерно ограничено. Следовательно, схема (3.3) не обладает свойством сходимости при малых значениях ε . Можно показать, что и схема центральных разностей не обладает свойством равномерной сходимости. Как и в случае краевой задачи возникает необходимость в построении равномерно сходящейся разностной схемы для решения задачи (1.1). Покажем, что использование сетки из [3] обеспечит равномерную сходимость схемы направленных разностей.

Зададим сетку

$$\Omega = \{x_n : x_n = x_{n-1} + h_n, n = 1, 2, \dots, N, x_0 = 0, x_N = X\}, \quad \Delta_n = [x_{n-1}, x_n].$$

В соответствии с [3] сетку Ω определим как кусочно-равномерную с мелким шагом h в пограничном слое и крупным шагом H вне его

$$\sigma = \min\left\{\frac{X}{2}, \frac{\varepsilon}{\alpha} \ln N\right\}, \quad h = \frac{\sigma}{N/2}, \quad H = \frac{X - \sigma}{N/2}.$$
(3.4)

Выпишем для задачи (1.1) схему направленных разностей на заданной сетке

$$L_n^h u^h = 2\varepsilon \frac{h_n (u_{n+1}^h - u_n^h) - h_{n+1} (u_n^h - u_{n-1}^h)}{h_n h_{n+1} (h_n + h_{n+1})} + a_n \frac{u_{n+1}^h - u_n^h}{h_{n+1}} - b_n u_n^h = f_n,$$

$$u_0^h = A, \qquad \frac{u_1^h - u_0^h}{h_1} = \frac{B}{\varepsilon}, \qquad n = 1, 2, \dots, N - 1.$$
(3.5)

Получим оценку устойчивости для решения схемы (3.5).

Лемма 3.2. Пусть $m_{ab} > 0$. Тогда для решения схемы (3.5) справедлива оценка устойчивости

$$\|u^{h}\|_{h} \leq \frac{4|B|}{\alpha} + |A| + \frac{X}{m_{ab}} \left(\frac{4\beta}{\alpha}|B| + \beta|A| + \|f\|_{h}\right).$$

Доказательство. Определим сеточную функцию Φ^h :

$$\Phi_n^h = \begin{cases} 1, & n = 0, \\ \prod_{j=1}^n \left(1 + \frac{\alpha h_j}{2\varepsilon}\right)^{-1}, & n = 1, \dots, N. \end{cases}$$

Несложно показать, что при всех n = 1, 2, ..., N - 1

$$L_n^h \Phi^h \le -\frac{\alpha^2 \Phi_n^h}{2\varepsilon + \alpha h_{n+1}} \cdot \frac{h_n}{h_n + h_{n+1}} < 0.$$

$$(3.6)$$

Определим сеточную функцию Ψ^h :

$$\Psi_n^h = \frac{4|B|}{\alpha} (1 - \Phi_n^h) + \frac{1}{m_{ab}} \left(\frac{4\beta}{\alpha} |B| + \beta |A| + ||f||_h\right) x_n + |A| \pm u_n^h.$$

Проверим выполнение условий (3.2) для функции Ψ^h . С учетом (3.6) получим:

$$\begin{split} \Psi_{0}^{h} &\geq 0, \quad \frac{\Psi_{1}^{h} - \Psi_{0}^{h}}{h_{1}} = \frac{4|B|}{\alpha} \frac{\Phi_{0}^{h} - \Phi_{1}^{h}}{h_{1}} + \frac{1}{m_{ab}} \left(\frac{4\beta}{\alpha}|B| + \beta|A| + \|f\|_{h}\right) \pm \frac{u_{1}^{h} - u_{0}^{h}}{h_{1}} \\ &\geq \frac{2|B|}{\varepsilon} \frac{1}{(1 + \frac{\ln N}{N})} - \frac{|B|}{\varepsilon} \geq 0, \\ L_{n}^{h} \Psi^{h} &= -\frac{4|B|}{\alpha} b_{n} - \frac{4|B|}{\alpha} L_{n}^{h} \Phi^{h} + \frac{1}{m_{ab}} \left(\frac{4\beta}{\alpha}|B| + \beta|A| + \|f\|_{h}\right) (a_{n} - b_{n} x_{n}) - \\ &\quad b_{n}|A| \pm f_{n} \geq \|f\|_{h} \pm f_{n} \geq 0, \quad n = 1, 2, \dots, N - 1. \end{split}$$

Итак, условия принципа максимума (3.2) выполнены, поэтом
у $\Psi^h_n \geq 0$ при всехn,из чего следует утверждение леммы.
 $\hfill \Box$

Сформулируем некоторые известные результаты, которые потребуются ниже.

Лемма 3.3. Пусть k_0, k_1, K_0, K_1 — неотрицательные константы такие, что $k_0^2 + K_0^2 > 0$ и $k_1^2 + K_1^2 > 0$, дифференциальный оператор L соответствует (1.1). Тогда для $\Psi(x) \in C^2[0,1]$ из условий

$$-K_0\Psi'(0) + k_0\Psi(0) \ge 0, \quad K_1\Psi'(1) + k_1\Psi(1) \ge 0, \quad L\Psi(x) \le 0, \quad x \in [0, X],$$
(3.7)

следует, что $\Psi(x) \ge 0, x \in [0, X].$

Следующая лемма справедлива в соответствии с [4].

Лемма 3.4. Пусть w(x) — произвольная трижды непрерывно дифференцируемая функция, тогда при всех n:

$$|L_n^h[w] - Lw(x_n)| \le C_3 \int_{x_{n-1}}^{x_{n+1}} (\varepsilon |w'''(s)| + |w''(s)|) \, ds.$$

Теперь докажем равномерную сходимость схемы (3.5).

Теорема 3.1. Пусть $m_{ab} > 0$. Тогда найдется C > 0:

$$|u(x_n) - u_n^h| \le C \frac{\ln^2 N}{N}, \quad n = 0, 1, \dots, N,$$
(3.8)

где u(x) — решение задачи (1.1), u^h — решение схемы (3.5) на сетке (3.4).

Доказательство. Пусть $z^h = u^h - [u]$. Учитывая лемму 3.4 и оценку производных (2.4), получим

$$|L_n^h z^h| = |L_n^h [u] - Lu(x_n)| \le 2C_0 C_3 \int_{x_{n-1}}^{x_{n+1}} \left(1 + \frac{1}{\varepsilon^2} e^{-\frac{\alpha s}{\varepsilon}}\right) ds, \quad n = 1, 2, \dots, N-1.$$

Следовательно,

$$|L_n^h z^h| \le 2C_0 C_3 |x_{n+1} - x_{n-1}| \left(1 + \frac{1}{\varepsilon^2} e^{-\frac{\alpha x_{n-1}}{\varepsilon}} \right), \quad n = 1, 2, \dots, N - 1.$$
(3.9)

Несложно показать, что при всех $n = 1, 2, \ldots, N - 1$ выполнено

$$|x_{n+1} - x_{n-1}| \le \frac{4X}{N}.$$

Далее оценим

$$|z_1^h - z_0^h| = |hu'(0) - (u(h) - u(0))| \le \max_{s \in \Delta_1} |u''(s)| \frac{h^2}{2}.$$

Учитывая оценки производных (2.4) и выбор шагов сетки в соответствии с (3.4), получим

$$z_0^h = 0, \qquad |z_1^h - z_0^h| \le \frac{4C_0}{\alpha^2} \frac{\ln^2 N}{N^2} = C_4 \frac{\ln^2 N}{N^2}.$$
 (3.10)

В соответствии с (3.4) возможны два случая значения сеточного параметра σ :

1) Пусть $\sigma = \frac{X}{2}$. В этом случае сетка равномерная и

$$\frac{\varepsilon}{\alpha}\ln N \ge \frac{X}{2}.$$

Учитывая (3.9), получим, что для некоторого C_5 :

$$|L_n^h z^h| \le C_5 \frac{\ln^2 N}{N}.$$
(3.11)

Определим сеточную функцию Ψ^h :

$$\Psi_{n}^{h} = \begin{cases} C_{4} \frac{\ln^{2} N}{N} + C_{6} \frac{\ln^{2} N}{N} x_{n} \pm z_{n}^{h}, & n = 0, \\ 2C_{4} \frac{\ln^{2} N}{N} + C_{6} \frac{\ln^{2} N}{N} x_{n} \pm z_{n}^{h}, & n = 1, \dots, N, \end{cases}$$
(3.12)

где C_4 соответствует (3.10). Используя оценки (3.10) и (3.11), несложно показать, что для функции Ψ^h из (3.12) выполнены условия (3.2), если задать $C_6 \ge (2\beta C_4 + C_5)/m_{ab}$. Тогда, в силу принципа максимума, $\Psi^h_n \ge 0$ при $n = 0, 1, \ldots, N$, откуда следует требуемая оценка (3.8).

2) Пусть $\sigma = \frac{\varepsilon}{\alpha} \ln N$. Ниже сделаем декомпозицию решения u(x) на регулярную q(x) и погранслойную W(x) составляющие

$$u(x) = q(x) + W(x).$$
(3.13)

В соответствии с оценкой устойчивости (2.3) решение задачи (1.1) имеет единственное решение, и существует постоянная E, ограниченная равномерно по ε такая, что u(X) = E. Перейдем от (1.1) к эквивалентной краевой задаче

$$Lu(x) = \varepsilon u''(x) + a(x)u'(x) - b(x)u(x) = f(x), \quad 0 < x < X,$$

$$a(0)u'(0) - b(0)u(0) = a(0)\frac{B}{\varepsilon} - b(0)A, \quad u(X) = E.$$

Потребуем, чтобы функци
иq(x) и W(x) в представлении (3.13) являлись решениями задач:

$$Lq(x) = f(x), \quad a(0)q'(0) - b(0)q(0) = f(0), \quad q(X) = E,$$

$$LW(x) = 0, \quad a(0)W'(0) - b(0)W(0) = a(0)\frac{B}{\varepsilon} - b(0)A - f(0), \quad W(X) = 0.$$

Докажем, что для некоторой постоянной C₇ справедливы оценки:

$$|q(x)| \le C_7, \quad |q'(x)| \le C_7, \quad |q''(x)| \le C_7, \quad |q'''(x)| \le C_7 \left(1 + \frac{1}{\varepsilon} e^{-\frac{\alpha x}{\varepsilon}}\right).$$
 (3.14)

Сначала докажем ограниченность q(x). Для этого зададим функцию

$$\Psi(x) = C_8(X + 1 - x) \pm q(x).$$

Для использования леммы 3.3 зададим $k_0 = b(0)$, $K_0 = a(0)$, $k_1 = 1$, $K_1 = 0$. Можно показать, что для некоторой постоянной C_8 выполняются условия (3.7) и, в силу леммы 3.3, верно $\Psi(x) \ge 0$, $x \in [0, X]$, откуда следует первое неравенство в (3.14).

Из краевого условия и ограниченности q(0) следует, что $|q'(0)| \leq C_9$. В соответствие с дифференциальным уравнением на q(x) и краевым условием a(0)q'(0) - b(0)q(0) = f(0) выполнено условие q''(0) = 0. Далее, по аналогии с леммой 2.3, можно получить остальные оценки производных в (3.14).

Получим оценку

$$|W(x)| \le C_{10} e^{-\frac{\alpha x}{\varepsilon}}.$$
(3.15)

Для этого определим функцию

$$\Psi(x) = C_{10}e^{-\frac{\alpha x}{\varepsilon}} \pm W(x).$$

Пусть $k_0 = \varepsilon b(0), K_0 = \varepsilon a(0), k_1 = 1, K_1 = 0$. Тогда для некоторой постоянной C_{10} выполняются условия (3.7). Тогда, в силу леммы 3.3, $\Psi(x) \ge 0, x \in [0, X]$, откуда следует оценка (3.15).

Итак, обосновано представление (3.13) с ограничениями (3.14) и (3.15) на функции q(x) и W(x) соответственно.

Обозначим $W_0 = W(0)$, при этом $q(0) = A - W_0$. Тогда W(x) является решением краевой задачи

$$LW(x) = 0, \quad W(0) = W_0, \quad W(X) = 0.$$
 (3.16)

Аналогичным образом, используя лемму 3.2, осуществим декомпозицию решения схемы (3.5). Для этого от схемы (3.5) перейдем к эквивалентной разностной схеме с заданными краевыми условиями:

$$L_n^h u^h = f_n^h, \quad 0 < n < N, \qquad u_0^h = A, \qquad u_N^h = F.$$

Теперь сеточное решение u^h представим в виде

$$u^h = q^h + W^h, aga{3.17}$$

где q^h и W^h являются решениями задач:

$$L_n^h q^h = f_n, \quad 0 < n < N, \qquad q_0^h = A - W_0, \qquad q_N^h = F,$$

$$L_n^h W^h = 0, \quad 0 < n < N, \qquad W_0^h = W_0, \qquad W_N^h = 0.$$
(3.18)

Итак, используя декомпозиции (3.13) и (3.17), получим

$$|u(x_n) - u_n^h| \le |q(x_n) - q_n^h| + |W(x_n) - W_n^h|.$$
(3.19)

В силу того, что W(x) является решением краевой задачи (3.16), а W^h является решением соответствующей схемы (3.18), то в соответствии с [5, с. 61] для некоторой постоянной C_{11} справедлива оценка равномерной сходимости

$$|W(x_n) - W_n^h| \le C_{11} \frac{\ln^2 N}{N}, \quad n = 0, 1, \dots, N.$$
 (3.20)

Теперь оценим первый модуль в (3.19). Учитывая (3.5), (3.17) и (3.18), можно заключить, что q^h является решением разностной схемы

$$L_n^h q^h = f_n, \quad 0 < n < N, \qquad q_0^h = A - W_0, \qquad \frac{q_1^h - q_0^h}{h_1} = \frac{B}{\varepsilon} - \frac{W_1^h - W_0^h}{h_1}$$

Пусть $z^h = [q] - q^h$. Используя оценку (2.4) при j = 2 и оценку (3.20), получим

$$|z_1^h - z_0^h| = |u(h) - W(h) - u(0) + W(0) - u'(0)h + W_1^h - W_0^h|$$

$$\leq |u(h) - u(0) - u'(0)h| + |W_1^h - W(h)| \leq C_{12} \frac{\ln^2 N}{N}.$$

Используя лемму 3.4 и оценки (3.14), получим

$$|L_n^h z^h| \le C |x_{n+1} - x_{n-1}| \le \frac{C_{13}}{N}.$$

Зададим сеточную функцию Ψ^h :

$$\Psi_{n}^{h} = \begin{cases} C_{12} \frac{\ln^{2} N}{N} + \frac{2\beta C_{12}}{m_{ab}} \frac{\ln^{2} N}{N} x_{n} + \frac{C_{13}}{m_{ab}N} x_{n} \pm z_{n}^{h}, & n = 0, \\ 2C_{12} \frac{\ln^{2} N}{N} + \frac{2\beta C_{12}}{m_{ab}} \frac{\ln^{2} N}{N} x_{n} + \frac{C_{13}}{m_{ab}N} x_{n} \pm z_{n}^{h}, & n = 1, \dots, N. \end{cases}$$

Тогда выполнены условия (3.2), и в силу принципа максимума $\Psi_n^h \ge 0$ при $n = 0, 1, \ldots, N$, поэтому для некоторой постоянной C_{14} верно

$$|q(x_n) - q_n^h| \le C_{14} \frac{\ln^2 N}{N}, \quad n = 0, \dots, N.$$
 (3.21)

Используя оценки (3.19)–(3.21), получим требуемую оценку (3.8), что доказывает теорему.

4. Результаты численных экспериментов

Рассмотрим краевую задачу

$$\varepsilon u''(x) + \alpha u'(x) - \beta u(x) = e^x, \quad 0 < x < 1, u(0) = 1, \quad u'(0) = \frac{1}{\varepsilon}.$$
(4.1)

Решение задачи (4.1) было найдено в явном виде.

Заметим, что m_{ab} , определенное в (2.2), в случае задачи (4.1) имеет вид $m_{ab} = \alpha - \beta$. При доказательстве теоремы 3.1 мы использовали ограничение $m_{ab} > 0$, поэтому в численных экспериментах рассмотрим случаи $m_{ab} > 0$ и $m_{ab} \le 0$.

Пусть $\alpha = 3, \beta = 1$, при этом $m_{ab} = 2$. В табл. 1 представлена погрешность

$$\Delta_N = \max_{0 \le n \le N} |u(x_n) - u_n^h|$$

схемы (3.5) при различных значениях ε и N в случае равномерной сетки. Из табл. 1 следует, что при использовании равномерной сетки при малых значениях ε решение схемы (3.5) становится не ограниченным и погрешность схемы значительна.

Таблица 1. Погрешность схемы направленных разностей на равномерной сетке при $\alpha=3,$ $\beta=1$

ε	N								
	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	
1	2.05E - 2	1.11E - 2	5.78E - 3	2.94E - 3	1.49E - 3	7.46E - 4	3.74E - 4	1.87E - 4	
2^{-3}	1.08E + 0	5.60E - 1	2.85E - 1	1.44E - 1	7.24E - 2	3.63E - 2	1.82E - 2	9.09E - 3	
2^{-4}	2.35E + 0	1.22E + 0	6.24E - 1	3.16E - 1	1.59E - 1	7.95E - 2	3.98E - 2	1.99E - 2	
2^{-5}	4.90E + 0	2.56E + 0	1.31E + 0	6.60E - 1	3.32E - 1	1.66E - 1	8.33E - 2	4.17E - 2	
2^{-6}	1.00E + 1	5.22E + 0	2.67E + 0	1.35E + 0	6.79E - 1	3.40E - 1	1.70E - 1	8.52E - 2	
2^{-7}	2.02E + 1	1.06E + 1	5.40E + 0	2.73E + 0	1.37E + 0	6.88E - 1	3.45E - 1	1.72E - 1	
2^{-8}	4.07E + 1	2.12E + 1	1.09E + 1	5.49E + 0	2.76E + 0	1.38E + 0	6.93E - 1	3.47E - 1	
2^{-9}	8.16E + 1	4.26E + 1	2.18E + 1	1.10E + 1	5.54E + 0	2.78E + 0	1.39E + 0	6.95E - 1	
2^{-10}	1.63E + 2	8.53E + 1	4.36E + 1	2.21E + 1	1.11E + 1	5.56E + 0	2.78E + 0	1.39E + 0	
2^{-14}	2.62E + 3	1.37E + 3	6.99E + 2	3.53E + 2	1.78E + 2	8.91E + 1	4.46E + 1	2.23E + 1	
2^{-18}	4.19E + 4	2.19E + 4	1.12E + 4	5.65E + 3	2.84E + 3	1.43E + 3	7.14E + 2	3.57E + 2	

В табл. 2 представлена погрешность Δ_N схемы (3.5) в случае неравномерной сетки (3.4).

В табл. 3 приведена скорость сходимости анализируемой схемы

$$P = \log_2 \frac{\Delta_N}{\Delta_{2N}}$$

в случае неравномерной сетки (3.4). В последней строке приведена скорость сходимости P_t , соответствующая полученной оценке точности (3.8). Из данной таблицы следует, что скорость сходимости несколько выше, чем $O(\ln^2 N/N)$.

Остановимся на случае $m_{ab} < 0$ при задании $\alpha = 0.5$, $\beta = 1$. В табл. 4 представлена погрешность Δ_N в зависимости от ε и N. В этом случае точность схемы (3.5) значительно ниже, чем в случае $m_{ab} > 0$, и не выполняется оценка точности, соответствующая теореме 3.1.

C	N								
E	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	
1	2.05E - 2	1.11E - 2	5.78e - 3	2.94E - 3	1.49E - 3	7.46E - 4	3.74E - 4	1.87E - 4	
2^{-3}	1.93E - 1	1.21E - 1	7.30E - 2	4.36E - 2	2.60E - 2	1.52E - 2	8.75E - 3	4.95E - 3	
2^{-4}	2.19E - 1	1.36E - 1	7.99E - 2	4.66E - 2	2.72E - 2	1.58E - 2	9.06E - 3	5.13E - 3	
2^{-5}	2.34E - 1	1.45E - 1	8.49E - 2	4.90E - 2	2.82E - 2	1.62E - 2	9.22E - 3	5.20E - 3	
2^{-6}	2.43E - 1	1.51E - 1	8.83E - 2	5.10E - 2	2.91E - 2	1.66E - 2	9.37E - 3	5.26E - 3	
2^{-7}	2.49E - 1	1.54E - 1	9.04E - 2	5.23E - 2	2.99E - 2	1.70E - 2	9.54E - 3	5.32E - 3	
2^{-8}	2.52E - 1	1.55E - 1	9.15E - 2	5.31E - 2	3.05E - 2	1.73E - 2	9.73E - 3	5.40E - 3	
2^{-9}	2.53E - 1	1.56E - 1	9.21E - 2	5.35E - 2	3.08E - 2	1.76E - 2	9.89E - 3	5.49E - 3	
2^{-10}	2.54E - 1	1.57E - 1	9.24E - 2	5.38E - 2	3.10E - 2	1.77E - 2	1.00E - 2	5.56E - 3	
2^{-14}	2.55E - 1	1.57E - 1	9.27E - 2	5.40E - 2	3.12E - 2	1.79E - 2	1.01E - 2	5.68E - 3	
2^{-18}	2.55E - 1	1.57E - 1	9.27E - 2	5.40E - 2	3.12E - 2	1.79E - 2	1.02E - 2	5.68E - 3	

Таблица 2. Погрешность схемы направленных разностей на сетке Шишкина при $\alpha = 3, \beta = 1$

Таблица 3. Скорость сходимости схемы направленных разностей на сетке Шишкина при $\alpha=3,$ $\beta=1$

6	N								
e	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}		
1	0.883	0.946	0.973	0.986	0.993	0.997	0.998		
2^{-3}	0.670	0.734	0.744	0.748	0.770	0.798	0.822		
2^{-4}	0.688	0.767	0.778	0.778	0.783	0.802	0.822		
2^{-5}	0.688	0.774	0.793	0.799	0.801	0.811	0.826		
2^{-6}	0.691	0.771	0.794	0.806	0.814	0.823	0.834		
2^{-7}	0.695	0.766	0.790	0.805	0.818	0.831	0.843		
2^{-8}	0.698	0.763	0.786	0.801	0.815	0.833	0.849		
2^{-9}	0.698	0.761	0.783	0.797	0.810	0.830	0.849		
2^{-10}	0.699	0.760	0.782	0.794	0.807	0.826	0.846		
2^{-14}	0.699	0.759	0.780	0.792	0.802	0.819	0.837		
2^{-18}	0.699	0.759	0.780	0.791	0.802	0.819	0.836		
P_t	0.170	0.356	0.474	0.555	0.615	0.660	0.696		

Таблица 4. Погрешность схемы направленных разностей на сетке Шишкина при $\alpha=0.5,$ $\beta=1$

ε	N								
	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	
1	1.22E - 1	5.97E-2	2.96E - 2	1.47E - 2	7.34E - 3	3.66E - 3	1.83E - 3	9.15E - 4	
2^{-3}	2.22E - 1	1.34E - 1	7.34E - 2	3.84E - 2	1.97E - 2	9.95E - 3	5.00E - 3	2.51E - 3	
2^{-4}	6.15E - 1	5.45E - 1	4.67E - 1	3.27E - 1	1.68E - 1	8.48E - 2	4.27E - 2	2.14E - 2	
2^{-5}	1.26E + 0	6.94E - 1	5.32E - 1	4.21E - 1	3.15E - 1	2.09E - 1	1.29E - 1	7.63E - 2	
2^{-6}	2.47E + 0	7.74E - 1	5.52E - 1	3.92E - 1	2.86E - 1	2.07E - 1	1.37E - 1	8.48E - 2	
2^{-7}	3.40E + 0	1.03E + 0	5.74E - 1	3.86E - 1	2.62E - 1	1.81E - 1	1.25E - 1	8.09E - 2	
2^{-8}	3.98E + 0	1.33E + 0	5.96E - 1	3.93E - 1	2.58E - 1	1.71E - 1	1.15E - 1	7.56E - 2	
2^{-9}	4.31E + 0	1.49E + 0	6.12E - 1	4.03E - 1	2.62E - 1	1.70E - 1	1.11E - 1	7.27E - 2	
2^{-10}	4.49E + 0	1.58E + 0	6.22E - 1	4.11E - 1	2.67E - 1	1.73E - 1	1.12E - 1	7.22E - 2	
2^{-14}	4.66E + 0	1.66E + 0	6.33E - 1	4.21E - 1	2.77E - 1	1.83E - 1	1.20E - 1	7.83E - 2	
2^{-18}	4.67E + 0	1.67E + 0	6.34E - 1	4.22E - 1	2.78E - 1	1.84E - 1	1.22E - 1	7.97E - 2	

Список литературы

- [1] Бахвалов Н.С. К оптимизации методов решения краевых задач при наличии пограничного слоя // Журн. вычисл. матем. и мат. физики. 1969. Т. 9, № 4. С. 841–890.
- [2] Ильин А.М. Разностная схема для дифференциального уравнения с малым параметром при старшей производной // Математические заметки. 1969. Т. 6, № 2. С. 237–248.
- [3] Шишкин Г.И. Сеточные аппроксимации сингулярно возмущенных эллиптических и параболических уравнений.— Екатеринбург: Изд-во УрО РАН, 1992.
- [4] Kellog R.B., Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points // Mathematics of computation. - 1978. - Vol. 32, № 144. -P. 1025-1039.
- [5] Miller J.J.H., O'Riordan E., and Shishkin G.I. Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions.—Singapore: World Scientific, 1996.
- [6] Дулан Э., Миллер Д., Шилдерс У. Равномерные численные методы решения задач с пограничным слоем. М.: Мир, 1983.
- [7] Самарский А.А. Теория разностных схем. М.: Наука, 1983.

Омский филиал Института математики СО РАН, ул. Певцова, 13, Омск, 644099 E-mails: zadorin@ofim.oscsbras.ru (Задорин А.И.) s.tihovskaya@yandex.ru (Тиховская С. В.) Статья поступила 15 февраля 2010 г.