
A HYBRID ALGORITHM FOR
SET COVERING PROBLEM1

ANTON V. EREMEEV, ALEXANDER A. KOLOKOLOV,
LIDIA A. ZAOZERSKAYA

Omsk Branch of Sobolev Institute of Mathematics Siberian Branch of
Russian Academy of Sciences, 13 Pevtsov st. 644099, Omsk, Russia
eremeev@iitam.omsk.net.ru, kolo@iitam.omsk.net.ru, zaozer@iitam.omsk.net.ru

Abstract. In this paper we propose a hybrid algorithm for the set covering problem (SCP),
which combines L -class enumeration, genetic algorithm (GA) and Lagrangean heuristic. The
lexicographical enumeration of L -classes in the linear relaxation of SCP ensures optimality of
the resulting solution. Both heuristics are used for obtaining the initial approximate solution.
The linear subproblems in L -class enumeration are also tested by means of Lagrangean
relaxation. The results of computation experiments appear to be promising.

Key Words. Set covering problem, genetic algorithm, L-class enumeration

1. INTRODUCTION

The set covering problem (SCP) can be stated as
follows. Consider a set M = {1, . . . ,m} and the
subsets Mj ⊆ M , where j ∈ N = {1, ..., n} . A
subset J ⊆ N is a cover of M if

⋃
j∈J Mj = M .

For each Mj a positive cost cj is assigned. The SCP
is to find a cover of minimum summary cost. The
problem where c1 = c2 = ... = cn will be called
the unicost SCP. In this paper we suppose that the
costs are integer, although in case of real costs just
a few changes in the algorithms would be required.
Sometimes it is more convenient to consider SCP as
an integer linear programming problem:

min{cx : Ax ≥ e, x ∈ {0, 1}n}, (1)

where A is an m×n matrix of 0s and 1s, c is an n -
vector of costs, e is the m -vector of 1s, and aij = 1,
if and only if i ∈ Mj . Using this formulation one
can view SCP as a problem of optimal covering of
rows by the columns in matrix A . In this paper we
assume that the columns are ordered according to
nonincreasing values of cj -s.

Amoung the numerous applications of the SCP
are the crew scheduling [2, ?], emergency facilities
allocation, production flow-lines optimization [5] etc.
Different algorithms have been proposed for exact

1The research was supported in part by RFBR Grant 97-
01-00771, and INTAS Grant 96-0820.

solving of SCP using branch and bound approach
[2, 6, 17], cutting planes, L-class enumeration (LCE)
[16, 18] and other techniques. However, SCP is an
NP -hard problem and usually application of exact
algorithms to the large-scale instances is very time-
consuming. A number of heuristic algorithms are
developed for approximate solving the large scale
problems within relatively short running time. The
solutions of good quality may be obtained using La-
grangean heuristics [7], neural networks [14] or meta-
heuristics such as GA [4, 11] or ant colony algorithms
[1]. Most of the successful versions of exact algo-
rithms combine the exact techniques with heuristic
methods (see e.g. [2, 6]).

2. L - CLASS ENUMERATION FOR
SET COVERING PROBLEM

The papers [15, 18] and some other works are de-
voted to development of an approach for investiga-
tion and solving of integer programming problems,
using some special (regular) partitions of space Rn ,
in particular, L-partition. In the framework of this
approach the L -class enumeration method was pro-
posed for the general integer linear programming
problems. Here we will discuss this method in the
way it is applied to the SCP.

Let Ω = {x ∈ Rn : Ax ≥ e, 0 ≤ x ≤ e} be
the relaxation set of SCP. The LCE method works

on the principle that the polyhedron Ω may be split
into lexicographically ordered subsets and the opti-
mal solution can be found by checking some of these
subsets. For detailed description of the LCE method
the following definitions are needed.

We say that points x, y ∈ Rn (x ≻ y) belong to
the same class of L-partition if no integer vector z
exists that x ⪰ z ⪰ y . Here ≻,⪰ are the symbols
of lexicographical order. Each point z ∈ Zn forms
a separate class of partition; other classes that con-
tain only noninteger points are called fractional. We
denote the factor - set, induced by L -partition for
a set X ⊂ Rn as X/L . The elements of X/L are
called L -classes. This partition has some important
properties, for example,

1) if X is bounded, then X/L is finite;

2) for X/L a linear order may be introduced: for
any nonempty V ′, V ′′ ∈ X/L we write V ′ ≻ V ′′ if
x′ ≻ x′′ for any x′ ∈ V ′ and x′′ ∈ V ′′ .

Let Ω0 be a set of all optimal solutions for (1),
z∗ = lexmin Ω0 . The LCE algorithm generates a
sequence of current points σ = {x(t)} from Ω, t =
1, . . . , θL with the following properties:

a) x(t) ≺ x(t+ 1), t = 1, . . . , θL − 1,

b) all points x(t) belong to different L-classes;

c) σ contains an integer subsequence σ′ = {x(tk)} ,
k = 1, . . . , q , such that z∗ ∈ σ′ and if k = 1, . . . , q ,
and t > tk , then (c, x(t)) < (c, x(tk)).

It is not difficult to see, that |σ| ≤ |Ω/L| , and in
case of SCP this sequence is proved to be finite [15].
The current points x(t) are constructed by solving
special linear programming problems.

The aim of the LCE is to find the integer opti-
mum, moving along the set Ω/L = {V1, ..., Vp} . It is
not necessary to visit all of the L-classes: an addi-
tional condition (record inequality) such as (c, x) ≤
(c, ζ)−1, where ζ = x(tk) is the best integer solution
found before the current step t > tk, , would exclude
some unnecessary L -classes. The value of the goal
function r = (c, ζ) will be called a record on the
current step. Before the LCE is started, the record
is assumed to be +∞ , or it may be determined by
means of some heuristic algorithm (for example, in
the LCE algorithm described below the initial ad-
missible solution and the corresponding record value
are obtained by the well-known Chvatal greedy algo-
rithm [8]). Every time when a new integer point is
found, the LCE excludes it by the record inequality.
The LCE can be started from any point x(0) ∈ Ω.
The process stops if it is impossible to find the next
suitable L-class. After this ζ is the optimal solution

to the SCP, given that x(0) ⪯ Ω0 .

Let ζ0 be the approximate solution found by the
greedy heuristic on the preliminary stage. On the
next stage L-class enumeration is began accourding
with lexicographically increasing order, starting from
the point lexmin Ω. Due to alternating L-structure
property of SCP (see e.g. [15]), this starting point
is an integer vector. The L-class enumeration algo-
rithm [18] for the SCP has the following outline.

The general scheme of LCE
Step 0. Find an approximate solution ζ0 ∈ Zn .

0.1 Find x′ = lexmin Ω.
0.2 Set r := min{(c, x′), (c, ζ0)} .
0.3 Set p := max{j : x′

j = 1, j = 1, ..., n−1}.
Step 1. Find φ = max{j : x′

j = 0, j = 1, ..., p− 1}.
1.1 If such φ does not exist, go to step 4.

Step 2. Set x′′ := x′. Solve the linear subproblem:

x′ = lexmin{x ∈ Ω : (c, x) ≤ r − 1,
x1 = x′′

1 , ..., xφ−1 = x′′
φ−1, xφ = 1}. (2)

2.1 If the subproblem (2) has no solutions,
and φ = 1, go to step 4.
2.2 If the subproblem (2) has no solutions,
and φ > 1, then

set p := φ and go to step 1.
2.3 If x′ ∈ Zn , and r > (c, x′), then

set r := (c, x′).
2.4 If x′ ∈ Zn , then

set p := max{j : x′
j = 1, j ≤ n− 1} ,

and go to step 1.
Step 3. Find φ := min{j : x′

j ̸= ⌊x′
j⌋, j = 1, ..., n} ,

and go to step 2.
Step 4. The enumeration is finished: the best

obtained integer solution is optimal.

The linear subproblems on step 2 we can solve,
for example, using the lexicographical dual simplex
method. Often it turnes out that these subproblems
have no feasible solutions. To save the computation
time the linear subproblems are examined by the fol-
lowing group testing heuristic, which allows to test
more than one L-class at a time.

The group testing heuristic is applied on step
2 in case an L -class where xφ = 1, and xj =
x′′
j , for all j = 1, . . . , φ − 1 is not found. Then we

solve the following subproblem:

x′ = lexmin{x ∈ Ω : (c, x) ≤ r − 1,

x1 = x′′
1 , ..., xj0−1 = x′′

j0−1,
j0+n0−1∑

j=j0

xj ≥ 1}, (3)

where j0 and n0 > 0 are such that:

j0 = min{j < φ : x′′
j = x′′

j+1 = ... = x′′
j+n0−1 = 0,

and no k ∈ [j + n0, φ− 1] exists that x′′
k = 0}.

If in the set {x ∈ Ω : (c, x) ≤ r − 1} there is no
such L-class V ⪰ x′′ that for all x ∈ V we have
xj = x′′

j , j = 1, ..., j0 − 1, then problem (3) has no
feasible solutions. Otherwise the next L-class would
be found, and the process would continue from it.

Before solving the problem (3) we first check the
existance of admissible solutions to it. Let us con-
sider the following supplementary linear subproblem:
find

n∑
j=1

cjxj → min (4)

subject to

x ∈ Ω,

j0+n0−1∑
j=j0

xj ≥ 1, (5)

xj = x′′
j , j = 1, ..., j0 − 1. (6)

If the optimal goal function value for (4) - (6) exceeds
r−1, then the problem (3) has no solutions. In order
to bound the optimum of (4) - (6) from below, one
can use an approximate solution to the dual problem.
This solution may be obtained for example by the
knapsack greedy algorithm. The LCE always finds
the optimum of SCP and finishes enumeration after
visiting not more than |Ω/L| L -classes.

3. GENETIC ALGORITHM

In our hybrid algorithm one of the heuristics applied
in for the search of initial approximate solutions is
the GA [11]. The genetic algorithms were proposed
in the works of J.Holland and further developed by
D.Goldberg and many other authors (see e.g.[9, 13]).
These algorithms are based on modelling of the se-
lective breeding in nature and of the random changes
which take place during mutation and crossover. The
GA population consists of individuals, and each in-
dividual is a pair of genotype g and phenotype x(g)
corresponding to a search point in the space of so-
lutions D . Here g is a fixed length string of sym-
bols (called genes) from alphabet A . The function
x(g) maps g to its phenotype x(g) ∈ D , thus defin-
ing a representation of solutions in GA. The search
is guided by the results of evaluation of the fitness
function Φ(g) for each genotype in population. Φ(g)
usually depends monotonically on the goal function
for feasible solutions and it may also be used as a
penalty function for infeasible ones.

The genotypes of the initial population are ran-
domly generated according to some a priori defined
probability distribution. The GA discussed here im-
plements the steady-state reproductive strategy [9],

and a single new individual is generated at each iter-
ation. The genotype of a new individual replaces the
least fit one in the population, thus the population
size s remains constant during the run of GA. Usu-
ally the stopping criterion is the limit on the number
of iterations tmax . The best solution found is re-
turned as the final result when GA stops.

Each new genotype (offspring) is constructed
from a pair of parents chosen out of the current pop-
ulation by a probabilistic selection operator. Then
the crossover operator replaces some genes of one
parent genotype with genes of the other. The result-
ing string undergoes mutation, where a randomly
chosen subset of genes is substituted with random
symbols from A . In this paper we consider a GA
where a gene is mutated with a fixed probability pm .
Usually pm is chosen empirically for the specific class
of optimization problems.

3.1. General Scheme of the Non-Binary Ge-
netic Algorithm

Let’s denote the set of columns that cover the row
i by Ni = {j ∈ N : aij = 1} . The non-binary
GA (NBGA) described here is based on a non-
binary representation where the genotype consists
of m genes g(1), g(2), . . . , g(m) , such that g(i) ∈ Ni ,
i = 1, 2, . . . ,m . Here each gene contains a column
index that is assigned to cover the row. In this
representation x maps a genotype g to the pheno-
type x(g) ∈ {0, 1}n , where ones correspond to the
columns present in genes of g . Obviously, it is a
feasible solution to the problem (1) and no repair
operator is needed.

For effective implementation of GA with non-
binary representation an additional operator is re-
quired to eliminate the redundant columns from the
solution after crossover and mutation. For this local
improvement we use greedy heuristics that find ap-
proximate solutions to a corresponding reduced ver-
sion Pg of the given SCP. The reduced problem Pg

has a matrix that consists of the columns of A repre-
sented in genes of g . An improved genotype is added
to the population only if there are no individuals with
the same phenotype in it yet.

In genotypes of the initial population each gene
gi, i = 1, ...,m is uniformly distributed over the set
Ni . Let’s consider the current population on itera-
tion t as a vector of genotypes of its individuals G =
(g1, g2, . . . , gs). The fitness function on iteration t is
defined as Φt(g) = cx(gl(t))−cx(g)+cn, where l(t) is
the index of the individual of the largest cover cost in
the population on iteration t . The selection operator
implements the proportional selection scheme, and

the probability to choose the k -th individual (k =
1, 2, . . . , s) equals p(gk) = Φt(gk)/

∑s
l=1 Φt(gl(t)).

The NBGA
1. While the initial population is not complete do

1.1. Generate a random genotype g .
1.2. Apply the column elimination procedure

Prime to g and add g to population.
2. For t :=1 to tmax do

2.1. Choose the parent genotypes gu , gv
by the proportional selection.

2.2. Produce an offspring g from gu and gv
using crossover operator.

2.3. Mutate each gene of g with probability pm .
2.4. Let g′ be the best of results of procedures

Greedy and Dual Greedy applied to g .
2.5. If there are no individuals in G with

phenotype x(g′), then substitute the
least fit genotype gl(t) in population by g′ .

Otherwise substitute gl(t) by g .

The operators of crossover, mutation and the lo-
cal improvement procedures Prime, Greedy and Dual
Greedy will be described in the following sections.

3.2. Crossover and Mutation

Our crossover operator (called LP-crossover) is de-
signed to find the best possible combination of the
given parent genotypes gu and gv , if it is possible
without extensive computations. Let’s consider a
problem of optimal crossover Poc , which is a reduced
version of the initial SCP where the covering subsets
restricted by the set of indices N ′ = {j|x(gu)j =
1} ∪ {j|x(gv)j = 1} .

First, in LP-crossover a simple reduction is ap-
plied to Poc . Denote S = {i ∈ M : |Ni ∩N ′| = 1} .
Then each row i ∈ S may be covered by a single col-
umn j(i) in Poc . Let’s call Q = {j|j = j(i), i ∈ S}
a set of fixed columns. For each i ∈

⋃
j∈Q Mj , one

of the columns that cover the gene g(i) in Q is as-
signed. Let’s refer to these genes as fixed too. As a
result of the reduction we obtain a new subproblem
Pr , that consists of the rows and columns that were
not fixed during this procedure. Second, the dual
simplex method is used to solve the linear relaxation
of Pr . If the solution x′ obtained by simplex method
is integer, then it is used to complete the genotype
g . To avoid time-consuming computations we don’t
start the simplex method if the number of rows in Pr

exceeds a certain threshold µ (we use µ = 150). If
this is the case or if the number of simplex iterations
exceeds its limit (equal to 300 in our experiments),
or if the solution x′ is fractional, then LP-crossover
returns an unchanged genotype gu .

We designed the mutation operator similar to the
proportional selection procedure. Suppose, i-th gene
is to be mutated. Then the probability to assign a
column j ∈ Ni to it equals pi(j) =

1
cj
/
∑

k∈Ni

1
ck
.

3.3. Redundant columns elimination

We use three greedy-type heuristics to exclude the re-
dundant columns from the solution. The most simple
heuristic Prime starts with a given cover discarding
the columns in increasing order of indices. A column
is discarded if the remaining solution is still a cover.

The second heuristic is the well-known Greedy al-
gorithm [8]. This algorithm might find a solution
which is not minimal, therefore Prime is run after it
to eliminate the redundant columns.

The next heuristic is the Dual Greedy algorithm,
which combines the successive columns elimination
and the adaptive columns pricing. Let’s denote the
set of columns in the subproblem Pg by N ′ := {j ∈
N : x(g)j = 1} . A cover J is obtained as follows.

The Dual Greedy Algorithm
1. Set N ′

i := Ni ∩N ′ for all i = 1, ...,m ,
M ′ := M,J ′ := N ′, J := ∅ .

2. While J ′ ̸= ∅ do
2.1. If there is i ∈ M ′ such that |N ′

i | = 1, then
set J := J ∪ {j},M ′ := M ′\Mj , for j ∈ N ′

i .
Otherwise choose j ∈ J ′ such that
j = argmax k∈J′

ck
|Mk∩M ′|

2.2. Set J ′ := J ′\{j} , N ′
i := N ′

i\{j} for all i ∈ Mj .

4. HYBRID ALGORITHM

The hybrid algorithm incorporates NBGA, L-class
enumeration, Lagrangean heuristic and greedy algo-
rithm [8]. The algorithm starts with finding an ap-
proximate solution ζ0 by means of the greedy algo-
rithm. After that the new solutions and the lower
bound of the optimal goal function value are sought
using Lagrangean relaxation (more details about the
Lagrangean heuristic in use will be given below). In
case the lower bound shows that the best found solu-
tion ζ0 is optimal, the algorithm terminates its work.
Otherwise the better solutions are sought NBGA.
This finishes the initial stage, after which the LCE
is performed.

The testing on step 2 of LCE is now performed
both by the knapsack greedy and by Lagrangean
heuristics. The Lagrangean relaxation includes all
linear constraints of the SCP, and for each of them a
Lagrangean multiplier is introduced. The multipliers
are updated according to subgradient optimization
algorithm [7]. The current best solution ζ0 may be

improved in some cases by finding an approximate in-
teger solution. To do this, after every γ iterations of
Lagrangean heuristic on the basis of the current mul-
tipliers we construct a dual feasible solution y with
the help of DualFeas procedure, proposed in [2]. The
constant γ here is chosen experimentaly. Using the
solution y with a help of reduced cost heuristic RCH
[2] we obtain an approximate primal integer solution
ζ̃ . If (c, ζ̃) < r , then the goal functon record is up-
dated: r := (c, ζ̃). The Lagrangean heuristic stops
if for the last τ iterations the lower bound was not
improved, or if it turnes out that the lower bound
exceeds r − 1.

In hybrid algorithm the knapsack greedy heuris-
tic and the Lagrangean relaxation are applied not
only in the group testing procedure, but every time
before solving the supplementary subproblem on step
2. In case infeasibility of subproblem is established,
the computationally expensive run of lexicographi-
cal simplex method is not needed. The same version
of Lagrangean heuristic is used at the initial stage.
The hybrid algorithm always finds an optimum in
SCP within finite number of steps, and the num-
ber of L -classed considered is usually substantially
smaller compared to the basic algorithm LCE.

4.1. Computational experiment

The hybrid algorithm was implemented in Borland
Pascal and tested on Pentium Cleron computer (460
MHz, 32Mb RAM). The experiments were carried
out on the randomly generated series 4 and 6 from
OR-Library [3] (n = 1000,m = 200, cj ∈ [1, .., 100]),
and the series 47 of 10 unicost problems (n = m =
100, each constraint contains 4 to 5 ones). The se-
ries 47 is proposed by Y.Kochetov and it is available
through the Internet at http://dol.iitam.omsk.net.ru.

The GA parameters in hybrid algorithm were set
as follows: N = 100, pm = 0.2, tmax = 1000. Be-
fore solving the non-unicost problems in GA we ap-
ply a core-refining reduction which keeps only the
columns from the set Ncore =

⋃m
i=1 α

10
i . Here αk

i is
the set of the greatest k indices in Ni, i = 1, . . . ,m .
At the initial stage the Lagrangean heuristic is run
one time, and after that the NBGA is run twise. In
Lagrangean heuristic τ = 500, and γ = 10.

The results of these experiments are shown in Ta-
bles 1-3. The column ’No’ shows the problem number
in series; T ∗ and Tex contain the time when opti-
mum is found and the total execution time of the
program (in seconds). The column ’Prc’ shows which
procedure was the first to find the optimum (Grd -
greedy algorithm; LR - Lagrangean relaxation at the
initial stage; GA - genetic algorithm; LCE - L -class

Table 1. The series 4

No LCE hybrid algorithm
Topt Tex L Topt Tex Prc θL

1 96 365 18 3 3 LR 0
2 594 1461 86 2 2 LR 0
3 87 362 30 2 2 LR 0
4 318 947 59 16 16 GA 0
5 97 352 29 2 2 LR 0
6 149 842 49 23 57 GA 0
7 188 400 24 2 2 LR 0
8 164 764 32 16 79 GA 0
9 511 1485 126 100 128 LR 2
10 304 537 77 2 2 LR 0

Table 2. The series 6

No LCE hybrid algorithm
T ∗ Tex L T ∗ Tex Prc θL

1 761 1354 52 33 288 GA 10
2 130 751 47 45 199 GA 14
3 183 543 23 26 128 LR 3
4 61 531 19 22 88 LR 2
5 1322 2120 187 29 304 GA 15

enumeration). The column θL gives the number of
L-classes visited by the algorithm.

Table 1 contains the computational results for se-
ries 4. In most of the cases the optimal solution is
found already in the Lagrangean relaxation. The
L-class enumeration was necessary only on one of
these problems; on the rest of them the optimality of
the obtained solutions followed from the Lagrangean
lower bounds. The overall computation time of the
hybrid algorithm on this series is approximately 26
times less than the time of pure L-class enumera-
tion. This large speed up is connected with a small
size of the duality gap in the problems of Series 4.

Series 6 and 47 contain the problems with larger
duality gap. Due to this fact these series are usually

Table 3. The series 47

No LCE hybrid algorithm
T ∗ Tex L T ∗ Tex Prc θL

1 279 326 114 11 58 GA 11
2 248 253 74 6 15 GA 1
3 431 448 216 8 67 GA 16
4 114 123 46 6 27 GA 6
5 0 56 8 0 46 Grd 8
6 268 276 90 87 91 LCE 26
7 609 645 176 10 75 GA 15
8 174 323 71 26 148 GA 35
9 77 107 34 7 32 GA 6
10 117 171 40 8 67 GA 16

harder than 4 for the algorithms based on the lin-
ear relaxation. In all problems of Series 6 and 47,
except for problem 47.6, the optimum was found by
the heuristics before L-class enumeraton. The total
number of the visited L-classes in comparisson with
LCE reduced on series 6 on average 7 times and on
series 47 this ratio was about 6. The computation
time of the hybrid algorithm was on average 5.3 times
less compared with LCE on series 6, and 4.5 times
less on series 47.

A detailed description of computational experi-
ments with NBGA solving the OR-Library bench-
mark problems is provided in [11]. For all of the 50
instances with random data and known optimal so-
lutions with 1000 to 5000 variables and 200 to 500
constraints the GA found the optimum at least once.

Besides that we considered two sets of combinato-
rial unicost set covering problems. The series Stein
consists of problems that arise from Steiner triple
systems. These instances were proposed in [12] as the
examples of hard problems that can be used for eval-
uation of the algorithms. During the experiments
with these probems the NBGA found the optimal so-
lutions in all cases where the optimum is known; the
solution found for the instance Stein.243 improves
the best result known to us from the literature [17].

The NBGA was also tested on a set of problems
CLR derived from a question of P.Erdös (see e.g.
[10, 14]). For the instances CLR.12 and CLR.13
the NBGA found the new solutions of 23 elements
and for the rest of the cases it found the solutions of
previously known values (see e.g.[14]). The optimal
solution value for the problems in this series was not
known before. With the help of our hybrid algorithm
we have established the optimality of the solution
with 26 elements for the problem CLR.9.

On the basis of the computational experiments
we conclude that the proposed hybrid approach is
promising. A combination of Lagrangean relaxation,
genetic algorithm and L-class enumeration allows to
substantially shorten the time of search for the opti-
mum as well as the total computation time.

5. REFERENCES

[1] Alexandrov D., Kochetov Y. Behavior of the Ant
Colony Algorithm for the Set Covering Problem,
Proc. of Symp. on Oper. Res., Springer Verlag,
2000, pp. 255-260.

[2] Balas E., Carrera M.C. A Dynamic Subgradient-
Based Branch and Bound Procedure for Set Cov-
ering, Oper. Res., vol.44, No 6, 1996, pp. 875-890.

[3] Beasley J.E. OR-Library: Distributing Test
Problems by Electronic Mail, Journ. of the Oper.
Res. Soc., vol. 41, No 11, 1990, pp. 1069-1072.

[4] Beasley J.E., Chu P.C. A Genetic Algorithm for
the Set Covering Problem, European Journ. of
Oper. Res., vol. 94, No 2, 1996, pp. 394-404.

[5] Brauner N., Dhaenens-Flipo C., Espinouse M.-
L., Finke G., Gavranovic H. Decomposition Into
Parallel Work Phases With Application to the
Sheet Metal Industry, Proc. of Intern. Conf.
on Industr. Engin. and Prod. Manag., Glasgow,
1999, vol. 1, pp. 389-396.

[6] Beasley J.E., Jörnsten K. Enhancing an Algo-
rithm for Set Covering Problems, European J.
Oper. Res., vol. 58, 1992, pp. 293-300.

[7] Caprara A., Fischetti M., Toth P. Algorithms for
the Set Covering Problem, Technical Report OR-
98-3, DEIS-Operations Research Group, 1998.

[8] Chvátal V. A Greedy Heuristic for the Set Cov-
ering Problem, Mathematics of Operations Re-
search, vol. 4, No 3, 1979, pp. 233-235.

[9] Davis L. Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York, 1991.

[10] Erdös P. On a Combinatorial Problem, Nordisk
Mat. Tidskrift, vol. 11, 1963, pp. 5-10.

[11] Eremeev A.V. A Genetic Algorithm with a Non-
Binary Representation for the Set Covering Prob-
lem, Proc. of Oper. Res., Springer Verlag, 1999,
pp.175-181.

[12] Fulkerson D.R., Nemhauser G.L., Trotter L.E.
Two Computationally Difficult Set Covering
Problems that Arise in Computing the 1-Width
of Incidence Matrices of Steiner Triple Systems,
Math. Progr. Study, vol. 2, 1974, pp. 72-81.

[13] Goldberg D.E. Genetic Algorithms in Search,
Optimization and Machine Learning, Reading:
Addison Wesley, 1989, 412 p.

[14] Grossman T., Wool A. Computational Experi-
ence with Approximation Algorithms for the Set
Covering Problem, Eur. J. Oper. Res., vol. 101,
No 1, 1997, pp. 81-92.

[15] Kolokolov A.A. Regular Partitions and Cuts in
Integer Programming, Discr. Analysis and Oper.
Res., Kluwer Academic Publ., 1996, pp. 59-79.

[16] Kolokolov A.A., Eremeev A.V., Zaozerskaya
L.A. On Hybrid L-class Enumeration and Ge-
netic Algorithm for Set Covering Problem, 15-th
Conf. of Intern. Federat. of Oper. Res. Soc., Ab-
str, Pekin, 1999, P.117.

[17] Mannino C., Sassano A. Solving Hard Set Cov-
ering Problems, Oper. Res. Letters, vol.18, 1995,
pp.1-5.

[18] Zaozerskaya L.A. On L-Class Enumeration Al-
gorithm for Set Covering Problem, Proc. of 11-
th Baikal Intern. School-Seminar ”Optimization
Methods and Their Applications”, 1998, pp. 139-
142 (in Russian).

