
A Study on Performance of the
(1+1)-Evolutionary Algorithm ∗

Pavel A. Borisovsky

Omsk Branch of Sobolev

Institute of Mathematics

13, Pevtsov str. 644099, Omsk, Russia

borisovsky@iitam.omsk.net.ru

Anton V. Eremeev

Omsk Branch of Sobolev

Institute of Mathematics

13, Pevtsov str. 644099, Omsk, Russia

eremeev@iitam.omsk.net.ru

Abstract

The first contribution of this paper is a theoretical comparison of the (1+1)-
EA evolutionary algorithm to other evolutionary algorithms in the case of
so-called monotone reproduction operator, which indicates that the (1+1)-
EA is an optimal search technique in this setting. After that we study the
expected optimization time for the (1+1)-EA and show two set covering problem
families where it is superior to certain general-purpose exact algorithms. Finally
some pessimistic estimates of mutation operators in terms of upper bounds on
evolvability are suggested for the NP -hard optimization problems.

1 Introduction

In this paper we study the performance of the (1+1)-EA evolutionary algorithm, also
known as random hill-climbing algorithm or Metropolis algorithm at zero temperature.
Our goal is to compare the (1+1)-EA to other evolutionary and deterministic algorithms
and to estimate its average optimization time.

The search process in evolutionary algorithms is usually guided by the selection operators
designed in such a way that individuals with greater fitness function values have greater
chances to produce the offspring. This principle that ”favors” the regions of higher fitness

∗© 2003 by Morgan Kaufmann, An Imprint of Elsevier Science. All rights reserved.

in genotypes space can be easily justified by intuition but the theoretical basis for this
way of controlling the population is not completely studied yet.

In view of the ”No free lunch” theorem (Wolpert and Macready, 1997) such justification
is unlikely without some additional assumptions concerning the fitness function behavior
and in fact analysis should encompass both the fitness function and the reproduction
operators, i.e crossover and mutation. One of the ways to introduce such additional
assumption was framed by Altenberg (1994, 1995) in terms of correlation between the
fitness of parents and the probability of the upper tail of the fitness distribution of their
offspring. The well-known ”big valley” conjecture (Boese, Kahng and Muddu, 1994) has
a similar flavor since one of its assumptions states that the better local optima in fitness
landscape tend to be closer to the global optimum in some distance measure. A stronger
form of such kind of assumption has been proposed in (Eremeev, 2000) as monotonic
growth of probability of the upper tail of the offspring fitness distribution as a function on
parent’s fitness. Another example can be found in (Aldous and Vazirani, 1994), where the
rigorous theoretical analysis reveals a significant potential of the ”go with the winners”
evolutionary algorithms in a situation where the mutation may only increase the parents
fitness by one. More versions of assumptions ensuring good performance of the evolutionary
algorithms can be found in literature dating back up to three decades (see e.g. (Holland,
1975, Lbov, 1972)).

In this paper we will investigate the implications of the monotonicity assumption which
now will be extended from mutation to general reproduction operators with the same
basic idea: the probability to obtain the offspring of ”high” fitness does not decrease with
improvement of the parents fitness.

The Introduction section contains the description of a framework (Eremeev, 2000) for
evolutionary algorithm analysis which is based on the usual Markov chain approach with
grouping of states. As an illustration of the monotone mutation concept here we show that
the black-box complexity class ONEMAX∗∗ defined in (Droste, Jansen, Tinnefeld and
Wegener, 2002) may be alternatively characterized through monotonicity of the standard
mutation operator. In Sect. 2 we prove that the (1+1)-EA is the optimal search technique
in a wide class of evolutionary algorithms in case of so-called monotone reproduction
operator and show that the reproduction operator can then be reduced to mutation only.
The subsequent analysis is concentrated on the time complexity of the (1+1)-EA. In Sect.
3 we obtain some upper bounds on the expected (1+1)-EA optimization time using the
standard probability theory techniques and the well-known method of waiting times until
a new fitness level is reached. Based on one of these upper bounds in Sect. 4 we construct
a pessimistic estimate valid for any polynomial-time mutation operator for polynomially
bounded NP -hard optimization problem, imposing the upper bounds on evolvability of
some individuals (the details on the notions of evolvability and its role in evolutionary
algorithms analysis can be found in (Altenberg, 1994)). The latter result is not a novelty
but an instructive application of the common knowledge from complexity theory to the
evolutionary algorithms analysis.

1.1 Notation and Assumptions

Let the optimization problem consist in finding a feasible solution y ∈ Sol ⊆ D, which
maximizes the objective function f : Sol → R, where D is the space of solutions, Sol ⊆ D

is a set of feasible solutions and R is the set of real numbers. In general an evolutionary
algorithm is searching for the optimal or near-optimal solutions using a population of
individuals, which is driven by the principles observed in biological evolution. The (1+1)-
EA mainly considered in this paper is a simplified version of the evolutionary algorithm
where the population consists of a single individual.

We assume that an individual is represented by a genotype, which is a fixed length string
g of genes g1, g2, . . . , gn, and all genes are the symbols of some finite alphabet A. For
example, the alphabet Σ = {0, 1} is used in many applications. Each genotype g represents
an element y = y(g) of space D, which may not necessarily be a feasible solution.

The search process is guided by evaluations of nonnegative fitness function Φ(g), which
defines the fitness of an individual with genotype g. In case y(g) ∈ Sol, it is supposed that Φ
is a monotone function of f(y(g)). In case y(g) ̸∈ Sol, the fitness function may incorporate a
penalty for violation of constraints defining the set Sol. Through this paper we will assume
that if Sol ̸= D then for any g′ such that y(g′) ∈ D\Sol holds Φ(g′) < maxg∈An Φ(g).

The genotype of the current individual on iteration t of the (1+1)-EA will be denoted
by g(t). The initial genotype g(0) is generated with some a priori chosen probability
distribution. Each new individual is built with the help of a random mutation operator
M : An → An, which adds some random changes to the parent genotype. The mutation
operator is applied to g(t) and if g = M(g(t)) is such that Φ(g) > Φ(g(t)), then we set
g(t+1) := g; otherwise g(t+1) := g(t). The stopping criterion is usually the limit on the
maximum number of iterations.

In this paper the mutation operator will be viewed as a randomized algorithm which
has an input genotype g and a random output M(g) ∈ An with probability distribution
depending on the input genotype and the specific data of the given problem instance. So
the data of the problem instance may be considered as a part of the input of mutation.
An r-parent reproduction operator in general will be treated analogously – its description
will be given in Sect. 2. One of the frequently used mutation operators is the standard
mutation, which consists in changing each gene of g with a fixed mutation probability
pmut. Another simple example is the 1-bit-flip mutation operator which chooses a random
position i and replaces the gene gi by a new symbol (see e.g. (Rudolph, 1998)). In general
the reproduction operator may be a much more complicated problem specific randomized
heuristic including recombination, mutation and local improvement heuristics. It may
involve random choices dependent on the ”logics” of the input problem like in (Schöning,
1999) and the repair heuristics analogous to those of Beasley and Chu (1996).

The analysis of the (1+1)-EA in principle could be carried out by the means of Markov
chains theory (see e.g. (Rudolph, 1998)). However, the size of the transition matrix of a
Markov chain grows exponentially as the genotype length increases, and the applicability
of this approach appears to be limited when studying the optimization problems with large
cardinality of solutions space. In order to overcome this difficulty we use the grouping of
the states into larger classes on the basis of fitness.

Assume that there are d level lines of the fitness function fixed so that
Φ0 = 0 < Φ1 < Φ2 . . . < Φd. The number of the level lines and the fitness values
corresponding to them may be chosen arbitrarily, but they should be relevant to the
given problem and the mutation operator to yield a meaningful model. Let us introduce

the following sequence of subsets of the set An:

Hi = {g : Φ(g) ≥ Φi}, i = 0, . . . , d.

Due to the nonnegativity of the fitness function, H0 equals the set of all genotypes.

The distribution of the current individual in the (1+1)-EA will be characterized (though
not completely) by the vector of probabilities

Q(t) = (q
(t)
1 , ..., q

(t)
d) = (P{g(t) ∈ H1}, . . . , P{g(t) ∈ Hd}),

which reflects the chances to have ”good enough” genotypes on iteration t.

Now suppose that for all i = 0, ..., d and j = 1, ..., d the a priori lower bounds αij on
mutation transition probability from subset Hi\Hi+1 to Hj are known, i.e. for every g ∈
Hi\Hi+1 holds αij ≤ P{M(g) ∈ Hj}, where P{M(g) ∈ Hj} =

∑
g′∈Hj

P{M(g) = g′}.
Here for convenience we assume that Hd+1 = ∅ by definition. Let A denote the matrix
with elements αij where i = 0, ..., d, and j = 1, ..., d.

If for all i = 0, . . . , d, and j = 1, . . . , d the probability P{M(g) ∈ Hj} does not depend
on the choice of g ∈ Hi\Hi+1 then there exists a matrix Γ with γij = P{M(g) ∈ Hj},
i = 0, ..., d, and j = 1, ..., d, called the threshold transition matrix.

A matrix A will be called monotone if αi−1,j ≤ αij for all i, j from 1 to d. In other words,
the matrix of bounds on transition probabilities is monotone if for any j = 1, . . . , d, the
genotypes from any subset Hi have the bounds on transition probabilities to Hj not less
than the bounds of the genotypes from any Hi′ , i

′ < i.

Obviously, for any mutation operator the monotone lower bounds exist (for exampleA = 0
where 0 is a zero matrix). The problem may be only with the absence of bounds which
are sharp enough to evaluate the mutation operator properly.

Definition 1 A mutation operator is monotone with respect to a set of levels Φ0,Φ1, ...,Φd

if there exists a threshold transition matrix Γ for it and this matrix is monotone.

In general M will be called monotone if it is monotone with respect to some set of levels.
Three examples of situations where mutation is monotone in solving some set covering
problems will be described in Sect. 3. Another interesting example of monotone mutation
is discussed below.

1.2 Class of functions ONEMAX∗∗ and monotone mutation

Droste, Jansen, Tinnefeld and Wegener (2002) introduce a number of problem classes
generalizing some of the well-known functions such as ONEMAX function, number of
the leading ones function, needle in the haystack function etc., and suggest the lower and
upper bounds on the complexity of these classes for the black box optimization algorithms.
Now we will see that one of these classes may be alternatively defined in terms of monotone
mutation.

First of all ONEMAX∗ is defined as the class of functions

ONEMAXa(x) =

n∑
i=1

((xi + ai) mod 2),

where the argument x and the parameter a belong to {0, 1}n. A more general class
ONEMAX∗∗ by definition consists of all functions ψ ◦ f where f ∈ ONEMAX∗ and
ψ : R → R is a strictly increasing function. Obviously function ONEMAX is an element
of ONEMAX∗∗ with a = (0, 0, ...0) and an identity mapping ψ.

Let us denote the set of all values of the fitness function Φ on the set of genotypes by
Range(Φ), i.e. Range(Φ) = {Φ(g) : g ∈ An}.

Proposition 1 Let M be the standard mutation operator with pmut < 1/2 and A =
{0, 1}. Assume there is a unique maximum g∗ of Φ(g) on An and |Range(Φ)| = n + 1.
Then M is monotone iff Φ ∈ ONEMAX∗∗.

Proof. Naturally here we will set d = n, {Φ0, ...,Φn} = Range(Φ) and consider the
threshold transition matrix Γ with elements γij , i = 0, ..., d, j = 1, ..., d.

In case Φ ∈ ONEMAX∗∗, the values of the fitness function monotonically increase with
the number of the correctly chosen genes and by Prop. 5 (Eremeev, 2000) the monotonicity
of M follows.

To prove the statement in the other direction first of all note that by assumption
Φn = maxg∈An Φ(g) and Hn = {g∗}.

Now we will see that no 0 ≤ i < n exists such that γin = γi+1,n. Indeed, since Hn = {g∗},
so for all g ∈ Hi\Hi+1, we have P{M(g) = g∗} = γi,n. Now there are exactly n + 1
different values for

P{M(g) = g∗} = p
δ(g,g∗)
mut (1− pmut)

n−δ(g,g∗), (1)

where δ(g, g∗) is the Hamming distance between g and g∗. So if we suppose that for some
0 ≤ i < n holds γin = γi+1,n then not all n + 1 possible values of P{M(g) = g∗} are
present among γ0n, γ1n, ..., γnn. This would imply that for some 0 ≤ j < n there exist
g ∈ Hj\Hj+1 and g′ ∈ Hj\Hj+1 such that γjd = P{M(g) = g∗} ̸= P{M(g′) = g∗} = γjd
which is impossible. So γin < γi+1,n due to monotonicity of M and each subset Hi\Hi+1

consists of genotypes with equal Hamming distance to g∗.

From (1) we conclude that for all 0 ≤ i ≤ n a genotype g belongs to Hi\Hi+1 iff
δ(g, g∗) = n − i. Consequently Φ(g) is a monotonically decreasing function of δ(g, g∗),
i.e. Φ ∈ ONEMAX∗∗. ⊔⊓

The requirement for the uniqueness of the global optimum cannot be simply omitted in
this proposition, because outside ONEMAX∗∗ the functions with several optima exist
satisfying the rest of conditions of Prop 1. In case n = 3 e.g. one of such functions is
Φ(g) = min{k(g), 7− k(g)}, where k(g) = g1 + 2g2 + 4g3.

2 The (1+1)-EA compared to other evolutionary
algorithms

In order to define the general scheme of an evolutionary algorithm we will assume that
the reproduction operator R is a randomized algorithm which has a set of genotypes
a1, a2, ..., ar on its input and computes a random output R(a1, a2, ..., ar) ∈ Ans i.e. s

offspring genotypes. The probability distribution of the output depends on the input
genotypes and the specific data of the problem being solved.

Let us consider an evolutionary algorithm EA which corresponds to the following scheme:
the initial set of genotypes a(0,1), . . . , a(0,N) is given, and on each iteration t a new group of
genotypes a(t,1), . . . , a(t,s) is produced by applying R(b1, . . . , br) where each bk, k = 1, ..., r
is some genotype which had been already generated before (i.e. bk ∈ A(t−1) where
A(t−1) = {a(0,l) : l = 1 . . . , N} ∪ {a(τ,j) : τ = 1, . . . , t − 1, j = 1, . . . , s}). It is easy to see
that most of all of the evolutionary algorithms such as the genetic algorithms (Holland,
1975), ”go with the winners” algorithms (Aldous and Vazirani, 1994), many versions of
genetic programming algorithms (Koza, 1992), (µ, λ)-EA and (µ+λ)-EA – see e.g. (Bäck,
1993) satisfy this scheme. Due to the finiteness of set An we can fix the set of all level
lines {Φ0, . . . ,Φd} = Range(Φ). Denote by ã(t) the best genotype in set A(t) and let P (t)

be the vector of probabilities for ã(t): P (t) = (P{ã(t) ∈ H1}, . . . , P{ã(t) ∈ Hd}).

Let ãR(b1, . . . , br) denote the best genotype among all s genotypes generated by R on
input b1, . . . , br. Now the definition of monotonicity has to be generalized for arbitrary
reproduction procedure. Informally this new definition will require that substitution of
parent genotypes by genotypes with greater or equal fitness should never decrease the
components of vector of probabilities:

Definition 2 Operator R is monotone if for arbitrary r-element sets of genotypes
b1, . . . , br and h1, . . . , hr such that

Φ(b1) ≤ Φ(h1), ...,Φ(br) ≤ Φ(hr) (2)

the following conditions hold for all j = 1, . . . , d:

P
{
Φ(ãR(b1, . . . , br)) ≥ Φj

}
≤ P

{
Φ(ãR(h1, . . . , hr)) ≥ Φj

}
. (3)

Note that this definition implies that if all conditions (2) are equalities for the sets of
parents b1, ..., br and h1, ..., hr then the probability distributions of Φ(ãR(b1, . . . , br)) and
Φ(ãR(h1, . . . , hr)) must coincide. Obviously the monotone mutation operator defined in
Sect. 1 is a special case of monotone reproduction operator with r = s = 1.

Let us consider now a simple example of monotone reproduction and postpone another
example till the end of Sect. 3. Suppose we have an arbitrary function Φ ∈ ONEMAX∗∗

and R is the standard 1-point or uniform crossover operator, but the genes in one of the
parent genotypes are randomly permuted before the crossover. It is not difficult to see
that in this case R is monotone and it would remain monotone if after this crossover the
1-bit flip mutation were applied.

Sometimes in our analysis the monotonicity condition may be relaxed in the following
way. We will call R weakly monotone if the inequality (3) holds at least for all j such that
Φj > max{Φ(hk) : k = 1, . . . , r}.

Let us define a one-parent mutation operator corresponding to R as

MR(g) = argmax (Φ(g),Φ(g′)),

where g′ = ãR(g, . . . , g), i.e. in MR(g) firstly the reproduction R is applied to a set of
identical parent genotypes and then the output is chosen as the fittest among the parent
and the offspring.

Now we can formulate the main result of this section:

Theorem 2 Suppose that a monotone reproduction operator R is used in the algorithm
EA and the operator MR is used in the (1+1)-EA. Let the algorithm (1+1)-EA always
start from the best genotype among a(0,1), . . . , a(0,N). Then for all t ≥ 0

P (t) ≤ Q(t). (4)

Here and below the vectors are compared coordinate-wise, i.e. (4) is equivalent to the set
of inequalities:

P{ã(t) ∈ H1} ≤ P{g(t) ∈ H1}, ..., P{ã(t) ∈ Hd} ≤ P{g(t) ∈ Hd}.

It is clear that if R is monotone then MR is monotone too. The following natural property
of MR will be useful for us.

Lemma 3 If MR is monotone and g and h are the random genotypes distributed so that
for all i = 1, . . . , d it holds that P{g ∈ Hi} ≤ P{h ∈ Hi}, then for all j = 1, . . . , d

P{MR(g) ∈ Hj} ≤ P{MR(h) ∈ Hj}. (5)

Proof. By means of the total probability formula and Abel transform we see that

P{MR(g) ∈ Hj} =

j−1∑
i=0

γijP{g ∈ Hi \Hi+1}+ P{g ∈ Hj} =

j−1∑
i=0

γij (P{g ∈ Hi} − P{g ∈ Hi+1}) + P{g ∈ Hj} =

γ0j +

j−1∑
i=1

(γij − γi−1,j)P{g ∈ Hi}+ (1− γj−1,j)P{g ∈ Hj}.

The probability P{MR(h) ∈ Hj}may be represented similarly, and from the monotonicity
of MR it follows that γij − γi−1,j ≥ 0 so inequality (5) holds. ⊔⊓

Proof of Theorem 2. For t = 0 inequality (4) is obvious. By induction on t assume that
P (t−1) ≤ Q(t−1). We have ã(t) = argmax {Φ(a′),Φ(ã(t−1))}, where a′ = ãR(b1, . . . , br)
and each bk is chosen from A(t−1) somehow. Then for any j = 0, . . . , d it holds:

P{ã(t) ∈ Hj} = P{a′ ∈ Hj or ã(t−1) ∈ Hj} =

P{ã(t−1) ∈ Hj}+ P{a′ ∈ Hj , ã
(t−1) ̸∈ Hj}.

Let us apply the total probability formula to the last summand:

P{a′ ∈ Hj , ã
(t−1) ̸∈ Hj} =

j−1∑
i=0

P{a′ ∈ Hj |ã(t−1) ∈ Hi \Hi+1}P{ã(t−1) ∈ Hi \Hi+1}.

The monotonicity of operator R and the definition of MR yield:

P{a′ ∈ Hj |ã(t−1) ∈ Hi \Hi+1} ≤

P{ãR(ã(t−1), . . . , ã(t−1)) ∈ Hj |ã(t−1) ∈ Hi \Hi+1} ≤

P{MR(ã(t−1)) ∈ Hj |ã(t−1) ∈ Hi \Hi+1}

(recall that MR returns the best of input and mutated genotypes). Thus

P{ã(t) ∈ Hj} ≤ P{ã(t−1) ∈ Hj}+

+

j−1∑
i=0

P{MR(ã(t−1)) ∈ Hj |ã(t−1) ∈ Hi \Hi+1}P{ã(t−1) ∈ Hi \Hi+1} =

P{MR(ã(t−1)) ∈ Hj}.

Now using the inductive assumption and the claim of Lemma 3 we obtain (4). ⊔⊓

It is easy to see that if R is weakly monotone then MR is still monotone. Thus the
following corollary holds.

Corollary 4 The monotonicity condition on R in Theorem 2 may be relaxed to weak
monotonicity.

The monotone reproduction operators appear to be a convenient theoretical construction
since for any given problem and operator R, a monotone reproduction operator R′ can
be considered with the transition probabilities P{Φ(ãR′(b1, . . . , br)) ≥ Φj} equal to some
monotone lower bounds on R but here the definition of the lower bounds has to be
understood in more general sense1 than the bounds for mutation operator in Sect. 1.

Then R′ may be viewed as a realization of the worst-case situation for a given set of lower
bounds. In this respect, Theorem 2 shows that the best possible lower bound on P (t) for
the EA within our framework is not better than the best lower bound on Q(t) for the
(1+1)-EA with the corresponding mutation operator MR.

Note that Theorem 2 could be generalized to a continuous case where instead of discrete
genotypes the elements of some continuous search space D are used. Instead of vectors
P (t) and Q(t) then we would compare the corresponding families of tails of distributions,

1Let I = (i1, ..., ir) be the vector of integers, and b = (b1, . . . , br) ∈ Anr. Then by b ∈ HI \HI+1

we mean that b1 ∈ Hi1 \Hi1+1, ..., b
r ∈ Hir \Hir+1. Now we may introduce the lower bounds as

αIj ≤ P{ãR(b) ∈ Hj}, I ∈ {0, ..., d− 1}r, j = 1, ..., r,

for all b ∈ HI \ HI+1. Then we have a partial order: I ⪯ I′ iff i1 ≤ i′1, ..., ir ≤ i′r. The

set of bounds {αIj} will be called monotone if I ⪯ I′ implies that αIj ≤ αI′j for all
I ∈ {0, ..., d− 1}r, j = 1, ..., r.

besides that the summations in the proofs of the theorem and lemma would have to be
turned into integrals (see e.g. (Borovkov, 1998); p.84). In order to ensure legitimacy of
integration by parts (instead of Abel transformation) one can impose some practically
insignificant conditions on operator R.

3 Expected hitting time for the optimum

In this section we will consider the average number of iterations the (1+1)-EA spends in
search of the optimal genotype. Of course the optimal solution to the problem may not
be represented in the set of all genotypes, however for simplicity in this section we will
assume that max{f(y(g)) : g ∈ An, y(g) ∈ Sol} = maxy∈Sol f(y).

Let us denote by tj the expected number of iterations until level j or greater is reached,
i.e. the expected hitting time of Hj and put T = (t1, t2, ..., td).

Given bounds matrix A let us introduce the following matrix W with elements
wij , i = 1, ..., d, j = 1, ..., d and vector α:

wij =

αi,j − αi−1,j , i < j

1− αj−1,j , i = j

0, i > j,

α = (α01, . . . , α0d).

By reasoning similar to Theorem 5 in (Eremeev, 2000) for arbitrary matrix norm || · || (see
e.g (Lankaster, 1969)) we obtain:

Proposition 5 If A is monotone and ||Wt|| t→∞−→ 0 then

Q(t) ≥ Q(0)Wt + α(I−W)−1(I−Wt), (6)

which is an equality in case M is monotone with Γ = A.

For example it can be shown that ||Wt|| t→∞−→ 0 for any matrix norm if αi,i+1 > 0, i =
1, 2, ..., d − 1, which is true for many mutation operators. Note that the right-hand part
of (6) tends to α(I − W)−1 when t → ∞ and by definition of W and α it follows
that α(I − W)−1 = 1. Thus we conclude that for convergence of the (1+1)-EA (in
probability) to the optimum it suffices that operator M have a non-zero probability of
improvement in every non-optimal genotype (obviously one can easily guarantee this using
the traditional Markov chain approach – see e.g. (Rudolph, 1998)). The next theorem
provides a qualitative estimate of the average time till convergence to optimal and near-
optimal solutions.

Theorem 6 If A is monotone and ||Wt|| t→∞−→ 0 then

T ≤ (1−Q(0))(I−W)−1 (7)

which is an equality in case M is monotone with Γ = A.

Proof. Using the properties of expectation (see e.g. (Borovkov, 1998); Chap.4, §4) we

conclude that tj =
∑∞

t=0
(1− q

(t)
j), j = 1, ..., d and thus

T =

∞∑
t=0

(1−Q(t)) ≤
∞∑
t=0

(1−Q(0)Wt − α(I−W)−1(I−Wt))

Since α(I−W)−1 = 1 so

T ≤
∞∑
t=0

(1−Q(0)Wt − 1(I−Wt)) = (1−Q(0))(I−W)−1. ⊔⊓

Bound (7) has a simple matrix form but in its applications the necessary lower bounds
on mutation operator may be hard to find. The next more simple estimate is based on
the idea of summing the waiting times until a new fitness level is reached – this idea has
been used already in the similar bounds by Bäck (1993), Garnier, Kallel and Schoenauer
(1999) and Mühlenbein (1993).

Proposition 7 The expected hitting time td of set Hd for the (1+1)-EA is estimated as
follows:

td ≤
d−1∑
i=0

1

αi,i+1
.

Let t∗ denote the expected number of iterations of the (1+1)-EA till the optimum is
reached and consider the 1-bit-flip mutation operator.

For function Φ ∈ ONEMAX∗∗ we naturally assume d = n and {Φ0, ...,Φn} = Range(Φ).
Then it is easy to see that for any genotype g ∈ Hi\Hi+1 holds P{Φ(M(g)) ≥ Φi+1} =
1− i/n. So by Prop. 7 we have

td ≤ n

n−1∑
i=0

1

n− i
= n

n∑
k=1

1

k
≤ n+ n

n∫
1

dx

x
,

which leads to a corollary analogous to the well-known result for ONEMAX function
(see e.g. (Garnier, Kallel and Schoenauer, 1999, Rudolph, 1998)):

Corollary 8 For the (1+1)-EA with 1-bit-flip mutation operator applied to a function
Φ ∈ ONEMAX∗∗ holds t∗ ≤ n(1 + lnn), where n is the string length.

A similar approach can be applied to some families of covering problems with regular
structure. Let us first consider a family of the set covering problems (SCP) suggested by
Balas (1984). In general the SCP is NP -hard and can be formulated as follows.

Given: M = {1, ...,m} and a set of subsets Mj ⊆M , j ∈ N = {1, . . . ,n}. A subset J ⊆ N
is called a cover if Uj∈JMj =M. The goal is to find a cover of minimum cardinality.

Assume that Ni = {j : i ∈ Mj}. In the Balas SCP family B(n,p) it is assumed that
m = Cp−1

n and the set {N1, N2, ..., Nm} consists of all n − p + 1-element subsets of N .
Thus J ⊆ N is an optimal cover iff |J | = p.

Suppose the binary representation of solutions (Beasley and Chu, 1996) is used, i.e.
the genes gj ∈ {0, 1}, j ∈ N are the indicators of the elements from N , so that
y(g) = {j ∈ N : gj = 1} ⊆ N . If y(g) is a cover then we assign its fitness Φ(g) = n−|y(g)|;
otherwise Φ(g) = 0. Setting d = n−p and Φ0 = 0,Φ1 = 1, ...,Φd = d it is easy to see that
αi,i+1 = 1− i/n again and by Prop. 7

t∗ = tn−p ≤ n

n∑
k=p+1

1

k
≤ n

n∫
p

dx

x
.

Corollary 9 Let the (1+1)-EA with binary representation and 1-bit-flip mutation opera-
tor be applied to a problem from set covering family B(n,p). If the initial genotype encodes
a cover then t∗ ≤ n ln(n/p).

In the instances of this family dimension m may be exponential in n (depending on
behavior of the parameter p), which can make the fitness evaluation procedure for SCP
exponential in n as well. The following family of problems is free from this nuisance.

A family of set covering instances G(k) consists of problems with n = m = 3k where
|Ni| ≡ |Mj | ≡ 2 for all i ∈ M, j ∈ N and all cycles consist of 3 elements (by cycle here
we mean a sequence j(1) < . . . < j(ν), such that Mj(θ) ∩Mj(θ+1) ̸= ∅, θ = 1, ..., ν − 1 and
Mj(ν) ∩Mj(1) ̸= ∅). In other words we have a graph of k disjoined cliques of size 3 where
set N is the set of vertices and M is the set of edges. The problem consists in selection of
such subset J ⊆ N that each edge has at least one endpoint in J . Obviously the optimal
solution is to pick a couple of vertices from each clique.

Let us consider the non-binary representation (see e.g. (Beasley and Chu, 1996, Eremeev,
1999)) of the set covering problem solutions, where each gene selects one of the subsets to
cover the corresponding element of M , i.e. gi ∈ Ni, i = 1, ...,m. A collection of elements
defined by genotype g is y(g) = {j ∈ N : gi = j for some i ∈ M}, and it is always a
cover. Let us assume that Φ(g) = n − |y(g)| again and d = k,Φi = i, i = 0, ..., k. Then
analogously to Corollary 8 follows

Corollary 10 For the (1+1)-EA with non-binary representation and 1-bit-flip mutation
operator applied to a problem from the set covering family G(k) holds t∗ = td ≤ k(1+ln k).

It is interesting that, as shown by Zaozerskaya (1998), the SCP families B(n,p) and G(k)
in integer linear programming formulation are hard for the Land and Doig branch and
bound algorithm (see e.g. (Schrijver, 1986); Chapt. 24) and for the L-class enumeration
algorithm of Kolokolov (1996). Both of these exact algorithms make an exponential in
n number of iterations, e.g. on the problems from G(k) the Land and Doig algorithm
requires 2k+1 branchings.

Note that both families of set covering problems discussed here may be considered as
examples of monotonicity of 1-bit-flip mutation, although in case of B(n,p) this mutation
operator is only weakly monotone. Besides that on family G(k) the standard mutation

operator with pmut < 1/2 using the non-binary representation and the fitness function
described above is monotone as well (Eremeev, 2000).

Finally let us briefly mention another example of a reproduction operator with r = 2, s = 1
which is monotone on the SCP family G(k). This operator is a simplified version of the one
used in a memetic genetic algorithm proposed by Eremeev (1999) but without the greedy
heuristics of local improvement. The so-called LP-crossover used here is a deterministic
operator aimed to find the best possible combination of the subsets given in the parent
genotypes a1 and a2. So a problem of the optimal crossover is considered, which is a
reduced version of the initial SCP but with the covering subsets restricted to the subsets
present in parents. The dual simplex method is used to solve the linear relaxation of
this problem taken in its integer linear programming formulation2. In case the solution
obtained by the simplex method turns out to be integer, the LP-crossover yields the best
possible offspring for a1 and a2; otherwise it returns genotype a1.

On the SCP problems from family G(k) it can be shown that if at least one of the parents
a1, a2 is not optimal then the LP-crossover will return the genotype a1 unchanged. Thus
it follows that the LP-crossover with subsequent standard mutation using pmut < 1/2 and
the non-binary representation is a monotone reproduction operator.

4 Pessimistic estimates for polynomial-time mutation

In this section we investigate how large the guaranteed lower bounds for the transition
probabilities can be if a ”fast” i.e. polynomial-time computable mutation operator is used
in solving hard optimization problems. The idea is to show that if some problem is unlikely
to be efficiently solvable by the randomized algorithms in general and the process of finding
the solution by EA consists of several stages then at least one of the stages should require
an immense amount of computations (in the worst case). If the information about the
problem instance was limited only to the outcomes of fitness evaluations made on the
previous steps of EA, it would be logical to treat the problem hardness in the sense of
black box complexity (see e.g. (Droste, Jansen, Tinnefeld and Wegener, 2002)) and the
hard problems would probably resemble the needle in the haystack function. However
in our case the reproduction operator is defined in more general setting (it may use any
problem parameters given in the input problem data), thus it is more appropriate to follow
the traditional approach used in the analysis of optimization problems complexity (see e.g.
(Garey and Johnson, 1979)).

In what follows we shall use the notation analogous to the one in (Ausiello and Protasi,
1995). By Σ∗ we denote the set of all strings s with symbols from {0, 1} with arbitrary
string length |s|.

2The original SCP in linear programming formulation may be rewritten as

min {z1 + ...+ zn : Az ≥ e, z ∈ {0, 1}n} ,

where A is an m×n matrix of 0s and 1s, e is the m-vector of 1s, and aij = 1, iff i ∈ Mj . The linear

relaxation of the SCP is obtained from this problem by replacement of the Boolean constraint
z ∈ {0, 1}n with the condition z ≥ 0. In the LP-crossover a reduced version of the problem will

normally have smaller dimensions and some submatrix of matrix A in its formulation.

Definition 3 An NP maximization problem Pmax is a triple Pmax = (I, Sol, fx), where
I ⊆ Σ∗ and Sol(x) ⊆ Σ∗ are such that:

1. I is the set of instances of Pmax and is recognizable in polynomial time (through this
paper the term polynomial time implies the running time bounded by a polynomial on length
of input instance encoding |x|, x ∈ I).

2. Given an instance x ∈ I, Sol(x) denotes the set of feasible solutions of x. Given x and
y the decision whether y ∈ Sol(x) may be done in polynomial time, and there exists a
polynomial h such that given any x ∈ I and y ∈ Sol(x), |y| ≤ h(|x|).

3. Given an instance x ∈ I and y ∈ Sol(x), fx(y) is a positive integer objective function
(to be maximized), which is computable in polynomial time.

A similar definition may be given for NP minimization problems, and all the following
statements may be properly adjusted for the minimization case as well. Here we will
consider the maximization problems for convenience. Let us denote the optimal objective
function value for instance x by f∗

x = maxy∈Sol(x) fx(y).

We will also need the formal definitions of a randomized algorithm and of class BPP of
languages recognizable with bounded probability in polynomial time (see e.g. (Ko, 1982,
Motwani and Raghavan, 1995)). By a randomized algorithm we mean an algorithm which
may be executed by a probabilistic Turing machine, i.e. the Turing machine which has
a special state for ”tossing a coin”. When the machine enters this state it receives a bit
which is 0 with probability 1/2 and 1 with probability 1/2. A polynomial-time probabilistic
Turing machine is a probabilistic Turing machine which always halts after a polynomial
number of steps. Studying the existence of mutation operators with certain lower bounds
for transition probabilities we will consider the possibility of implementing the mutation
by a polynomial-time randomized algorithm.

Definition 4 BPP is the class of languages L ⊆ Σ∗ for which there exists a polynomial-
time probabilistic Turing machine M , such that:
1) For all x ∈ L holds P{Mgives an output 1} ≥ 3/4.
2) For all x ̸∈ L holds P{Mgives an output 0} ≥ 3/4.

Note that one of the open questions in complexity theory is the relation between the
classes NP and BPP . A widely believed conjecture is that NP ̸⊆ BPP , which is also
equivalent to another conjecture NP ̸= RP (see e.g. (Ko, 1982)). We will use the following
”folklore” result for class BPP .

Lemma 11 Let Pmax be an NP -hard NP maximization problem. Then unless NP ⊆
BPP , no randomized algorithm solves all instances x of Pmax in polynomial time with
probability more than 1/poly(|x|), where poly(|x|) is a polynomial in the length of input x.

Since a variable x for problem instance has been introduced, it’s logical to treat all
parameters of our model and the mappings y and Φ as functions of x also.

So far no specific assumptions have been made concerning the method of solutions
encoding in genotype strings. Given the encoding scheme for feasible solutions of an NP
maximization problem, one can use the string y as a genotype, but we will assume an
arbitrary mapping y(x) : An(x) → D computable in polynomial time.

Now we will consider Φ(x) : An(x) → R, using a set of d(x) fitness function levels

0 < Φ
(x)
1 < Φ

(x)
2 . . . < Φ

(x)

d(x) and denoting the lower bounds for transition probabilities by

αij(x), 0 ≤ i ≤ d(x), 1 ≤ j ≤ d(x). Besides that in our model we will require that the num-

ber of subsets H
(x)
j containing the infeasible solutions i.e. max

{
j : y(x)

(
H

(x)
j

)
̸⊆ Sol(x)

}
is bounded above by some polynomial in |x|.

Let us recall that if f∗
x is bounded by some polynomial in |x| for all instances x ∈ I, an

NP maximization problem Pmax is called polynomially bounded.

Proposition 12 Suppose Pmax is a polynomially bounded NP -hard NP maximization
problem and the mappings y(x) : An(x) → D, Φ(x) : An(x) → R are computable in
polynomial time. If a polynomial-time mutation operator exists for Pmax such that for
some polynomial poly for all instances x

α01(x) ≥ 1/poly(|x|), α12(x) ≥ 1/poly(|x|), ..., αd(x)−1,d(x)(x) ≥ 1/poly(|x|), (8)

provided that f(y(x)(g)) = f∗
x for all g ∈ H

(x)

d(x)
, then NP ⊆ BPP .

Proof. Since Pmax is polynomially bounded, there exists a polynomial poly1 such that
d(x) ≤ poly1(|x|) for all x ∈ I. Suppose a mutation operator M complies with bounds (8).
Then by Prop. 7 the (1+1)-EA attains the optimum after not more than poly(|x|)poly1(|x|)
mutations on average. Denote the random number of the iteration when the (1+1)-EA

finds an optimal genotype in H
(x)

d(x) by τ∗(x). Then by the Markov inequality,

P
{
τ∗(x) ≥ 2 · poly(|x|)poly1(|x|)

}
≤ 1

2
.

So running the (1+1)-EA for 2 · poly(|x|)poly1(|x|) iterations with arbitrary g(0) ∈ An(x)

and applying y(x)(g) to the final genotype we will obtain the optimum with probability
at least 1/2, and by Lemma 11 the required statement follows. ⊔⊓

Prop. 12 shows that unless NP ⊆ BPP , in the setting defined in the formulation, the
mutation operators with polynomial running time will necessarily fail to produce with high
probability the offspring fitter than the parent at least for some parent individuals in some
instances of Pmax. Of course in practice these ”degenerate” instances and individuals may
be very rare and the evolvability (i.e. likelihood of parents being able to produce offspring
fitter than themselves) may be high enough.

Note that the same situation takes place with any polynomial-time reproduction operator
R because in Prop. 12 we may also consider the mutation operatorMR corresponding toR
as discussed in Sect. 2 (then αi,i+1(x) for MR would be the lower bounds on probability
that any collection of parent genotypes b1, ..., br such that argmax {Φ(b1), ...,Φ(br)} ∈
Hi \Hi+1, produces at least one offspring in Hi+1). This implies that in the evolutionary
algorithms with efficient operators the non-vanishing guarantees of evolvability for the
NP -hard polynomially bounded problems are unlikely to exist.

5 Discussion

The upper bounds on the (1+1)-EA complexity in Sect. 3 demonstrate that for some
families of instances the (1+1)-EA is relatively competitive compared to some enumerative
algorithms. However these families of problems may be easily solved using simple local
search heuristics, so the random nature of (1+1)-EA is not so important here. Droste,
Jansen, Tinnefeld and Wegener (2002) have shown that (1+1)-EA is a near-optimal search
strategy in the class of needle in the haystack functions in black-box scenario, but at
the same time the optimality was established for the trivial random search routine as
well. From a formal view point a number of randomized algorithms successfully used
in complexity theory may also be considered as the (1+1)-EA optimizing a needle in
the haystack function of specific structure, e.g. the algorithm of C. Papadimitriou for 2-
Satisfiability problem with expected running time O(n2) (see e.g. (Motwani and Raghavan,
1995)), the algorithm of U. Schöning (1999) for k-Satisfiability problem etc. However none
of these methods actually exploits the full power of the (1+1)-EA since the search process
is independent of fitness evaluations until the optimum is found (obviously no meaningful
correlation assumption as discussed in Sect. 1 applies in such a case).

The minimum graph bisection problem with random graphs drawn from the ”planted
bisection” model is one of the few complicated optimization problems, for which it has been
theoretically shown (Carson and Impagliazzo, 2001) that there is little difference between
the ”full blown” (1+1)-EA and the more sophisticated methods such as Metropolis
algorithms and even a problem-specific heuristic of Boppana (1987). It would be interesting
to find more non-trivial problem classes where the random evolutionary specifics of
the (1+1)-EA makes it the method of choice. These further studies may involve the
results presented here or the more problem-specific approaches like those in (Carson and
Impagliazzo, 2001, He and Yao, 2001, Wegener, 2001).

Acknowledgements

The research was supported in part by the INTAS grant 00-217 and ”Integracia” program
grant.

References

Aldous, D. and U. V. Vazirani (1994). “Go with the winners” algorithms. In IEEE
Symposium on Foundations of Computer Science, pp. 492–501.

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In K. E.
Kinnear (Ed.), Advances in Genetic Programming, pp. 47–74. Cambridge, MA: MIT
Press.

Altenberg, L. (1995). The schema theorem and Price’s theorem. In D. Whitley and M. D.
Vose (Eds.), Foundations of Genetic Algorithms 3, pp. 23–49. San Mateo, CA: Morgan
Kaufmann.

Ausiello, G. and M. Protasi (1995). Local search, reducibility and approximability of NP -
optimization problems. Information Processing Letters 54, 73–79.

Bäck, T. (1993). The interaction of mutation rate, selection, and self-adaptation within
a genetic algorithm. In R.Männer and B. Manderick (Eds.), Proceedings of Parallel
Problem Solving from Nature II (PPSN II) North Holland, pp. 85–94.

Balas E. (1984). A sharp bound on the ratio between optimal integer and fractional covers.
Mathematics of Operations Research 9 (1), 1–5.

Beasley, J. E. and P. C. Chu (1996). A genetic algorithm for the set covering problem.
European Journal of Operation Research 94 (2), 394–404.

Boese, K. D., A. B. Kahng and S. Muddu (1994). A new adaptive multi-start technique
for combinatorial global optimizations. Operations Research Letters 16, 101–113.

Boppana, R. B. (1987). Eigenvalues and graph bisection: an average case analysis. In
Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pp.
280–285.

Borovkov, A. A. (1998). Probability theory. Gordon and Breach.
Carson, T. and R. Impagliazzo (2001). Hill-climbing finds random planted bisections.

In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA’2001), pp.
903–909.

Droste, S., T. Jansen, K. Tinnefeld and I. Wegener (2002). A new framework for the valua-
tion of algorithms for black-box optimisation. In Foundations of Genetic Algorithms 7.

Holland, J. (1975). Adaptation in natural and artificial systems. University of Michigan
Press.

Eremeev A. V. (1999) A Genetic Algorithm with a Non-Binary Representation for the
Set Covering Problem. In P. Kall and H.-J. Lüthi (Eds.), Proceedings of Operations
Research (OR’98). pp. 175–181. Springer Verlag.

Eremeev A. V. (2000). Modeling and analysis of genetic algorithm with tournament
selection. In C. Fonlupt et al (Eds.), Proceedings of Artificial Evolution Conference
(AE’99). Lecture Notes in Computer Science, 1829. pp. 84–95. Springer Verlag.

Garey, M. and D. Johnson (1979). Computers and intractability. A guide to the theory of
NP -completeness. W.H. Freeman and Company.

Garnier, J., L. Kallel and M. Schoenauer (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7 (1), 45–68.

He, J. and X. Yao (2001). Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence 127, 57–85.

Ko, K. (1982). Some observations on the probabilistic algorithms and NP -hard problems,
Information Processing Letters 14, 39–43.

Kolokolov, A. A. (1996). Regular partitions and cuts in integer programming. In A. D.
Korshunov (Ed.), Discrete Analysis and Operations Research, pp. 59–79. Kluwer
Academic Publishers.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of
natural selection. MIT Press.

Lankaster, P. (1969). Theory of matrices. Academic Press.
Lbov, G. S. (1972). Training for extremum determination of function of variables measured

in names scale. In Proceedings of Second Int. Conf. on Artifical Intelligence, London,
pp. 418–423.

Motwani, R. and P. Raghavan (1995). Randomized algorithms. Cambridge University
Press.

Mühlenbein, H. (1993). How genetic algorithms really work: I. Mutation and hillclimbing.
In R. Männer and B. Manderick (Eds.), Proceedings of Parallel Problem Solving from
Nature II (PPSN II). North Holland, pp. 15–26.

Rudolph, G. (1998). Finite Markov chain results in evolutionary computation: A tour
d’horizon. Fundamenta Informaticae 35 (1–4), 67–89.

Schöning, U. (1999). A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In Proceedings of 40th IEEE Symposium on Foundations of Computer
Science, pp. 410–414.

Schrijver, A. (1986). Theory of linear and integer programming, Volume 2. John Wiley &
Sons.

Wegener, I. (2001). Theoretical aspects of evolutionary algorithms. In Proceedings of
theTwenty-EighthInternational Colloquium on Automata, Languages, and Program-
ming(ICALP2001), Crete, Greece, pp. 64–68.

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1 (1), 67–82.

Zaozerskaya, L. (1998). Investigation and solving of some classes of integer programming
problems on the basis of the regular partitions. Ph. D. thesis, Omsk Branch of Sobolev
Institute of Mathematics, SB RAS. (in Russian).

