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Abstract

We consider a problem of multi-product lot-sizing and scheduling where each product
can be produced by a family of alternative multi-machine technologies. Multi-machine
technologies require one or more machine at the same time. A sequence dependent setup
time is needed between different technologies. The criterion is to minimize the makespan.
Preemptive and non-preemptive versions of the problem are studied. We formulate mixed
integer linear programming models based on a continuous time representation for both
versions of the problem. Using these models, the polynomially solvable cases of the
problem are found. It is proved that the problem without setup times is strongly NP-
hard if there is only one product, and each technology occupies at most three machines.
Besides that, problem cannot be approximated within a practically relevant factor of the
optimum in polynomial time, if P6=NP.

1 Introduction

In practice, many scheduling problems involve tasks, machines and materials such as
raw materials, intermediate and final products. Each task may consist in storage, load-
ing/unloading or transformation of one material into another and may be preceded by a
sequence-dependent setup time. One of the standard optimization criteria is to minimize
the makespan, i.e. the time when the last task is completed.

This paper considers a multi-product lot-sizing and scheduling problem with multi-
machine technologies, where a multi-machine technology requires more than one machine
at the same moment of time, also known as a multi-processor task [3] in parallel computing
scheduling. The problem is motivated by the real-life scheduling applications in chemical
industry and may be considered as a special case of the problem formulated in [4].
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An analysis of computational complexity of lot-sizing and scheduling problems with
multi-processor tasks and zero setup times is carried out in [3, 5, 8]. In the present paper
we consider a more general case where the non-zero setup times may be required as well.
A similar multi-product lot-sizing and scheduling problem with setup times on unrelated
parallel machines was studied in [2]. However on one hand, in [2] each technology involved
just a single machine, on the other hand the lower bounds on the lot sizes were given.

2 Problem Formulation

Consider a plant producing k different products. Let Vi > 0 be the demanded amount
of product i, i = 1, . . . , k and let m be the number of machines available at the plant.
For each product i, i = 1, . . . , k, there is at least one technology to produce this product.
Let U be the set of all technologies, d = |U |, and each technology is characterized by the
set of machines it simultaneously occupies Mu ⊆ {1, . . . ,m}, u ∈ U, and the product i it
produces. While the product i is produced by technology u, all machines of the subset Mu

are engaged and at any moment each machine of the plant may be engaged in not more
than one technology.

Let Ui ⊆ U denote the set of technologies that output product i, i = 1, . . . , k, and
au > 0 is the production rate, i.e. the amount of product i produced by u per unit of
time, u ∈ Ui. It is assumed that a feasible schedule may assign to the same product i one
or more technologies from Ui, i = 1, . . . , k, i.e. the migration is allowed according to the
terminology from [8]. For each machine l the setup times from technology u to technology q
are denoted by sluq, sluq > 0 for all u, q ∈ Kl, where Kl = {u : l ∈ Mu, u ∈ U} is the set
of technologies that use machine l, l = 1, . . . ,m.

The problem asks to find for each product i, i = 1, . . . , k, the set of technologies
from Ui that will be utilized for production of i, to determine the lot-sizes of produc-
tion using each of the chosen technologies and to schedule this set of technologies so
that the makespan Cmax is minimized and the products are produced in demanded vol-
umes V1, . . . , Vk. The problem is considered in two versions: when preemptions of tech-
nologies are allowed (denoted P |seti, pmtn, sluq|Cmax) and when the preemptions are not
allowed (denoted P |seti, sluq|Cmax).

In practice one often may assume that the setup times satisfy the triangle in-
equality sluq + slqp ≥ slup, l = 1, . . . ,m, u, q, p ∈ Kl. In what follows we denote
the special case of preemptive scheduling with the triangle inequality assumption by
P |seti, pmtn, ∆sluq|Cmax.

The problems formulated above are strongly NP-hard because in the special case of
m = 1 the metric shortest Hamilton path reduces to them and this problem is known to
be NP-hard in the strong sense [7].

3 Problem Complexity in Case of Zero Setup

Times

It was shown in [5, 8] that in case of zero setup times the problems formulated in Section 2
are intractable. These results are obtained using the graph coloring and fractional graph
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coloring problems. The results from [5, 8, 12] imply that even in the special case when
each product has exactly one technology producing it and each machine suits only two
technologies, problems P |seti, sluq = 0|Cmax and P |seti, pmtn, sluq = 0|Cmax can not be
approximated within a factor k1−ε for any ε > 0, if P6=NP.

Here we claim that in the case of single product, when multiple technologies are al-
lowed, the problems formulated in Section 2 are intractable as well:

Proposition 1 Problems P |seti, sluq = 0|Cmax and P |seti, pmtn, sluq = 0|Cmax are
strongly NP-hard even in the special case when the number of products k = 1, and all
technologies have equal production rates, however each technology occupies at most 3 ma-
chines.

Besides that, in the case of k = 1, the problems P |seti, sluq = 0|Cmax and
P |seti, pmtn, sluq = 0|Cmax are not approximable within a factor d1−ε for any ε > 0,
assuming P 6=NP.

4 Mixed Integer Programming Model

Let us define the notion of event points analogously to [6]. By event point we will mean
a subset of variables in mixed integer programming (MIP) model, which characterize a
selection of a certain set of technologies and their starting and completion times. In
one event point each machine may be utilized in at most one technology. The set of all
event points will be denoted by N = {1, . . . , nmax}, where the parameter nmax is chosen
sufficiently large on the basis of a-priory estimates or preliminary experiments.

The structure of the schedule is defined by the Boolean variables wun such that wun = 1
if technology u is executed in event point n, and wun = 0 otherwise. In case technology u
is executed in event point n, the staring time and the completion time of technology u
in this event point are given by the real-valued variables T s

un and T f
un accordingly. The

variable Cmax is equal to the time when the last technology is finished (the makespan).
Define the following notation:

let I be the set of all products, |I| = k;
let M be the set of machines, |M | = m;
H =

∑
i∈I

max
u∈Ui

{
Vi
au

}
+(k−1)· max

l∈M, u,q∈Kl

{sluq} is an upper bound on makespan. The amount

of time H is sufficient to produce all the demanded products.
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Then the MIP model for P |seti, pmtn, sluq|Cmax problem is as follows:

Cmax → min, (1)

T f
un ≤ Cmax, u ∈ U, n ∈ N, (2)∑

u∈Kl

wun ≤ 1, l ∈ M, n ∈ N, (3)

T s
un ≥ T f

qñ + slqu −H · (2− wun − wqñ +
∑

q′∈Kl

∑
ñ<n′<n

wq′n′), (4)

l ∈ M, u, q ∈ Kl, n, ñ ∈ N, n 6= 1, ñ < n,

T f
un ≥ T s

un, u ∈ U, n ∈ N, (5)

T f
un − T s

un ≤ wun ·max
q∈Ui

{
Vi

aq

}
, i ∈ I, u ∈ Ui, n ∈ N, (6)

∑
n∈N

∑
u∈Ui

au · (T f
un − T s

un) ≥ Vi, i ∈ I, (7)

T s
un ≥ 0, u ∈ U, n ∈ N, (8)

wun ∈ {0, 1}, u ∈ U, n ∈ N. (9)

The objective function (1) and inequality (2) define the makespan criterion. Con-
straint (3) implies that in any event point on machine l at most one technology may be exe-
cuted. Constraint (4) indicates that the starting time of technology u on machine l should
not be less than the completion time of a preceding technology on the same machine, plus
the setup time. Constraint (5) guarantees that all technologies may be performed only for
non-negative time. If a technology u is not executed in the event point n (i.e. wun = 0)
then its duration should be zero – this is ensured by inequality (6). Constraint (7) bounds
the amount of production according to the demand. Constraints (8) – (9) give the area
where the variables are defined.

A MIP model for problem P |seti, sluq|Cmax may be obtained from (1) – (9) by adding
the inequality ∑

n∈N

wun ≤ 1, u ∈ U, (10)

which ensures each technology is executed without preemptions.
These two models and their modifications for the triangle inequality case are studied

experimentally in [10].

5 Polynomially Solvable Cases

In order to find an optimal solution to P |seti, sluq|Cmax using model (1) – (10), it is
sufficient to set nmax = d because the preemptions are not allowed. Denote PLP the linear
programming problem obtained by fixing all Boolean variables (wun) in model (1) – (10).
Here and below by fixing of the variables we assume assignment of some fixed values to
them (which turns these variables into parameters). Problem PLP with nmax = d involves
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a polynomially bounded number of variables, which means it is polynomially solvable (see
e.g. [9]).

Let τLP be an upper bound on the time complexity of solving problem PLP. The
problem P |seti, sluq|Cmax, where the number of technologies is bounded by a constant
from above, we will denote by P |seti, sluq, d = const|Cmax. This problem reduces to
(nmax + 1)d problems of PLP type with nmax = d. Therefore the following theorem holds.

Theorem 1 Problem P |seti, sluq, d = const|Cmax is polynomially solvable within
O(τLP · dd) time.

To find an optimal solution to P |seti, pmtn, ∆sluq|Cmax problem, it suffices to set
nmax = dm in model (1) – (9). Indeed, the number of different sets of technologies that

may be executed simultaneously does not exceed
m∏

l=1
fl ≤ dm, where fl = |Kl| + 1 if

|Kl| < d, otherwise fl = d. Besides that, there exists an optimal solution to problem
P |seti, pmtn, ∆sluq|Cmax where each of the above mentioned sets of technologies is exe-
cuted simultaneously at most once. This fact follows by the lot shifting technique which
is applicable here since the setup times obey the triangle inequality.

Let P ′
LP denote the linear programming problem obtained by fixing all Boolean vari-

ables (wun) in MIP model (1) – (9). A problem P ′
LP with nmax = dm and the number of

machines bounded above by a constant is polynomially solvable. Let τ ′LP denote an upper
bound of the time complexity of solving P ′

LP . The problem P |seti, pmtn, ∆sluq|Cmax,
where the numbers of machines and products are bounded by a constant will be denoted
by Pm|seti, pmtn, ∆sluq, k = const|Cmax in what follows. This problem reduces to 2dnmax

problems of P ′
LP type, where nmax = dm. The total number of technologies d does not

exceed k(2m − 1), so the following result holds.

Theorem 2 Problem Pm|seti, pmtn, ∆sluq, k = const|Cmax is polynomially solvable
within O(τ ′LP · 2(k(2m−1))m+1

) time.

A number of other polynomially solvable cases of problems P | seti, sluq| Cmax and
P | seti, pmtn, sluq| Cmax with zero setup times may be found in [1, 5, 8, 11].

Conclusion

The problem of multi-product lot-sizing and scheduling with multi-machine technologies is
studied in preemptive and non-preemptive versions. Non-approximability of the problem
is shown and new NP-hard special cases with zero setup times are identified. MIP models
are formulated for both versions of the problem using the event-points approach and
continuous time representation. New polynomially solvable special cases of the problem
are found using the MIP models, under assumption that the number of technologies is
bounded by a constant.

Further research appears to be appropriate in extending the obtained results to the
version of the problem where technologies may involve several tasks which should be
executed sequentially and each task is performed on a number of machines simultaneously.
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