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Abstract

A new restart rule is proposed for Genetic Algorithms (GAs) with multiple
restarts. The rule is based on the Schnabel Census method, transfered from the
biometrics, where it was originally developed for the statistical estimation of a size
of animal population. In this paper, the Schnabel Census method is applied to esti-
mate the number of different solutions that may be visited with positive probability,
given the current distribution of offspring. The rule consists in restarting the GA as
soon as the maximum likelihood estimate reaches the number of different solutions
observed at the recent iterations.

We demonstrate how the new restart rule can be incorporated into a GA on
the example of the Set Cover Problem. Computational experiments on benchmarks
from OR-Library show a significant advantage of the GA with the new restarting
rule over the original GA. On the unicost instances, the new rule also tends to
be superior to the well-known rule, which restarts an algorithm when the current
iteration number is twice the iteration number when the best incumbent was found.

Keywords: maximum likelihood, abundance of population, set cover, transfer of
methods

1 Introduction
Genetic Algorithms (GAs) are the randomized search heuristics based on the biological
analogy of selective breeding in nature, originating from the work of J. Holland [18]. A
GA manipulates with a population of individuals, using the random operators that model
mutation and crossover in nature. Suppose that a GA is applied to an optimization
problem with the space of solutions D and the objective function f : D → R to be
maximized. An individual is a pair of genotype g and phenotype x(g), where g is a fixed
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length string of symbols (called genes) from some finite alphabet, and x(g) corresponds
to a search point in the space of solutions D. The function x(g) maps g to its phenotype
x(g) ∈ D, thus defining a representation of solutions in a GA. The search in GAs is
guided by the values of the fitness function Φ(g) = φ(f(x(g))) on the genotypes of the
current population Πt on iteration t. Here φ : R → R may be an identical mapping
or a monotone function, chosen appropriately to intensify the search. The genotypes of
the initial population Π0 are generated according to some a priori defined probability
distribution.

Due to randomness of initialization, selection, mutation and crossover operators, their
behavior varies from run to run. In order to increase the probability of finding an optimal
solution, it is a common practice to use multiple restarts of a GA. The choice of the
iteration when the GA is stopped and restarted again (a restart rule) was considered in
a number of papers [2, 19, 20, 22]. A stopping criterion is also proposed for the multi-
objective evolutionary algorithms in [23].

In this paper, a new restart rule is proposed for the GAs. The rule is based on
the Schnabel Census method, transfered from the biometrics, where it was originally
developed for the statistical estimation of a size of animal population [34], assuming that
one takes repeated samples of size 1 (at suitable intervals of time) and counts the number
of distinct animals seen. This method was used in computer science already to estimate
the number of local optima on the basis of repeated local search [31]. Experiments [31,
32] showed that the estimates based on this approach are adequate for the landscapes
with uniform basin of attraction sizes, but have a negative bias when the basin sizes are
significantly unequal.

Here we make a simplifying assumption that during the latest iterations, the GA
population was generated according to the same distribution and the Schnabel Census
method is applicable to estimate the number of different solutions that may be visited
with positive probability in this distribution. The rule consists in restarting the GA as
soon as a maximum likelihood estimate reaches the number of different solutions observed
at the latest iterations. The rationale of this rule is that it stops the GA when, most likely,
there are no more non-visited solutions in the area where the GA population spent the
latest iterations. In such a case it would be more appropriate to restart the GA instead
of waiting till it leaves the explored area by mutation and crossover.

There are two major GA outlines in use: the elitist GAs, which copy a certain number
of the “most promising” individuals from the previous population to the next one, and
the non-elitist GAs, which generate all individuals of a new population with the same
probability distribution. The well-known Simple GA [18, 35] is an example of non-elitist
GAs. We expect that the new restart rule is sufficiently general to be applicable in
both types of GAs, although in the present paper the rule is tested only with an elitist
steady-state GA.

We demonstrate how the new restart rule can be incorporated into a GA [9] with
Non-Binary Representation (NBGA) for the Set Cover Problem (SCP). Computational
experiments on benchmarks from OR-Library show a significant advantage of the GA with
the new restarting rule, compared to the original version of the GA [9]. In particular,
given equal computational budget, in 35 out of 74 SCP instances the new version of the
GA had a higher frequency of finding the optima and only in 5 out of 74 instances the new
version showed inferior results. On the unicost SCP instances, the new rule also tends
to be superior to the well-known rule [16], which restarts an algorithm when the current
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iteration number is twice the iteration number when the best incumbent was found.
The idea of using the Schnabel Census method for estimation of the number of unvis-

ited solutions [31], as well as the basic ideas of GA [18], are the examples of transfer of
ideas from biology into computer science. In the present paper, both methods are com-
bined together. Schnabel Census, originally developed for estimation of animal population
size, is not used for counting individuals here (the population size is a known parameter
of a GA, kept constant throughout the run), but for estimation of the number of solutions
which may be visited if the distribution of offspring in the GA remains unchanged.

In the next section, we briefly discuss the use of Schnabel Census in biology and
computer science. Section 3 gives a motivation and a detailed description of the restart
rule based on Schnabel Census. Section 4 briefly describes the GA considered in this paper.
Section 5 presents the experimental evaluation of the proposed restart rule. Concluding
remarks a given in Section 6.

2 Estimation of Animal Population Size and the Num-
ber of Local Optima

Schnabel Census method is developed in biometrics for statistical estimation of the size
of animal populations [33, 34]. According to this method, one takes repeated samples
of size n0 from a population and counts the number of distinct animals seen. Often
it is assumed that the probability of catching any particular animal is the same. The
sampled animals are marked, unless they were marked previously, and returned back
into the population. Then a statistical estimate for the total number ν of individuals in
population is computed on the basis of the total number of animals marked in all the
samples.

This method, with the sample size n0 = 1, was adapted in [31] to estimate the number
of local optima in combinatorial optimization problems on the basis of repeated local
search outcomes with random starting points. A number of other approaches have been
proposed for estimation of the number of local optima. One may fit certain type of
parametric distribution of the basin of attraction sizes (exponential, gamma, lognormal
etc.) [14, 32] to estimate this parameter. Nonparametric estimates, such as the bootstrap
or the jackknife, can also be employed [11, 27, 34, 32]. Assuming a particular type of
distribution of basin sizes one can obtain the maximal likelihood estimate for the local
optima number, or a confidence interval for it.

In what follows, we will apply the Schnabel Census method to estimate the number
of values that a discrete random variable may take with non-zero probability. The other
methods mentioned above could be applied to this problem as well, but unfortunately
this problem does not have a satisfactory solution in the general case (see e.g. [22]), where
different values of the random variable may have diferent probabilities.

3 Restart Rule Based on Schnabel Census
One of the theoretical approaches to understanding the Simple GA (and some of its its
generalisations) as a dynamical system was suggested in [35, 37]. Suppose that X is a
finite genotypes space. In the dynamical system models of GAs, a population vector p
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is introduced which has a length |X|. A k-th component pk of this vector is the propor-
tion of the population Π that has a genotype yk ∈ X, k = 0, ..., |X| − 1 (assuming that
the genotypes in X are numbered in some standard order). Given a population vector
pt, of the current population Πt, a function G(pt) produces a vector in [0, 1]|X|, where
the k-th component, k = 1, . . . , |X| equals the probability that an offspring computed
for population Πt+1 will have the genotype yk. The result of M.Vose [35] shows that as
the population size tends to ∞, the sequence of population vectors of the Simple GA
p0,p1, ...,pt converges in probability to the sequence p0, G(p0), ..., Gt(p0) for any finite t.
This suggests that it may be helpful to consider the infinite-population GA as an ap-
proximation of a finite-population GA because on each iteration of an infinite-population
GA the vector pt+1 is a deterministic function G(pt) of the current population vector. It
was shown in [36, 37] that the fixed points of G (i.e. such population vectors p where
p = G(p) holds) are crucial in the analysis of the infinite-population GA. The properties
of a fixed point p of an infinite-population GA are determined by the eigenvalues asso-
ciated with the differential of G at that point (see e.g. [36, 37]). If all these eigenvalues
belong to the interior of the unit disk, then the point p is called stable. It was shown
in [35] that these stable points are attractors in the sense that from almost all initial
population vectors p0 the infinite-population Simple GA converges to one of the stable
points. The finite-population GAs demonstrate a similar metastable behavior, although
in a randomized way: the probability distribution of their population remains “almost”
stationary (close to a stable population vector p) for a great number of iterations, until a
seldom random event might shift it out into the basin of attraction of some other stable
fixed point [24]. The elitist GAs were considered in [37] and shown to have a metastable
behavior as well.

In [28], C.Reeves has shown that it is rather unlikely that a Hamming local optimum
(w.r.t. Hamming neighborhood of radius 1 in the genotypes space) would not be a GA
attractor as well. Experimental [28] and theoretical [36] studies have also revealed that
there is a strong connection between attractors and local optima. With this in mind, it
should be advisable to restart a GA, once its population has been trapped for a long time
in one of the stable points. This idea is implemented in the new restart rule described
below.

Let a parameter r define the length of the historical period considered for statistical
analysis in the restart rule. Given a value of r, we assume that during the r latest
iterations, all new offspring in the GA obeyed the same distribution and their genotypes
may be treated as the sampled animals in the Schnabel Census method. Then we apply
the Schnabel Census method in order to estimate the number ν of different solutions
that may be visited with a positive probability, assuming that the current distribution of
offspring remains unchanged.

In what follows, we assume that in the latest r iterations of a GA, the observed sample
consists of r independent offspring solutions. Let us define the random variable K as the
number of distinct solutions in this sample. We will make a simplifying assumption that
all solutions, that may be generated in the current distribution, have equal probabilities.
Then, as it was noticed in [7], for any fixed ν the value K has the following distribution:

Pr{K = k} =
ν!

(ν − k)!

S(r, k)

νr
,

where S(r, k) = 1
k!

∑k
s=0(−1)k

(
k
s

)
(k − s)r is the Stirling number of the second kind. This
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distribution is also known as the Arfwedson distribution [21]. The maximum likelihood
estimate ν̂ML for the unknown ν is

ν̂(r, k) = argmax
{

ν!

(ν − k)!νr

}
, (1)

where k is the number of different solutions actually generated on the latest r iterations of
the GA. The value ν̂ML = ν̂(r, k) may be found from (1) by the standard one-dimensional
optimization methods (see e.g. [31]).

The proposed rule restarts the GA as soon as the estimate ν̂ML becomes equal to k.
The value of r is tuned adaptively during the GA execution. The rationale behind this
rule is that once the equality ν̂ML = k is satisfied, most likely there are no more non-visited
solutions in the area where the GA population spent the latest r iterations. In such a
situation, it is more appropriate to restart the GA rather than to wait till the population
distribution will significantly change by the evolutionary mechanisms.

4 The Genetic Algorithm for Set Cover Problem
The Set Cover Problem may be formulated as follows. Consider a set M = {1, . . . ,m}
and the subsetsMj ⊆M, where j ∈ N = {1, ..., n}. A subset J ⊆ N is a cover ofM if⋃

j∈JMj =M. For eachMj, a positive cost cj is assigned. The SCP is to find a cover
of minimum summary cost.

The SCP is a well-known NP-hard problem [13]. A number of heuristic algorithms
are developed for approximate solving the SCP within relatively short running time:
Lagrangian relaxation heuristics [6], neural networks [15], local search [38], GAs [4, 9],
ant colony algorithms [1] etc.

Here we will use the GA which was proposed in our earlier work without any restart
rule [9]. This GA is based on the elitist steady-state population management. It is
denoted as NBGA because of the non-binary representation of solutions [4, 9], involving
an alphabet with up to n symbols. The NBGA uses a problem-specific crossover operator
based on the linear programming, the proportional selection operator and a mutation
operator that makes random changes in every gene with a given probability pm. The
offsprings are improved by the means of different greedy procedures before they are added
into the population.

5 Computational Experiments
The NBGA was implemented in Borland Delphi 5 and tested on Pentium-IV with
3 GHz CPU and 2 GB RAM, using the OR-Library [3] benchmark problem sets 4-6,
A-H, and two sets of combinatorial problems CLR and Stein. The sets 4-6 and A-H
consist of randomly generated problems with costs cj from 1,...,100, while CLR and Stein
consist of combinatorial unicost problems, where cj = 1 for all j. Dimensions of the prob-
lems and the number of instances in each randomly generated series are given in Table 1.

We compared three modes of GA execution with equal computational budget:

• Mode A. Single run with no restarts.
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Table 1: Parameters of randomly generated instances

Series Name 4 5 6 A B C D E F G H
Rows (m) 200 200 200 300 300 400 400 500 500 1000 1000

Columns (n) 1000 2000 1000 3000 3000 4000 4000 5000 5000 10000 10000
Num. of probl. 10 10 5 5 5 5 5 5 5 5 5

• Mode B. Restart the GA as soon as the current iteration number becomes twice
the iteration number when the best incumbent was found. This rule was used
successfully by different authors to restart random hill-climbing method [16] and
GAs [2, 10]. To avoid early restarts, this rule is applied only after a certain number
of iterations, denoted by tmin. We use tmin equal to the population size.

• Mode C. Restart the GA using the new rule proposed in Section 3. The value of
parameter r is chosen adaptively as follows: Whenever the best found solution is
improved, r is set to be the population size. If the best incumbent was not improved
during the latest 2r iterations, then the value of r is doubled. We reset r to the
population size when the best found solution is improved, assuming that whenever
the best incumbent is improved, this means that the population has reached a new
unexplored area and the length of the historic period for analysis should be reduced.
To reduce the CPU cost, the termination condition is checked only when the value
of r is updated.

A single experiment with a GA, given a certain computational budget we will call
a trial. In the experiments, N = 30 independent trials of the GA in each of the three
modes were carried out. The GA population size was set to 100. Let the statistic σ be
the average relative error

∑30
k=1

fk−f∗

30f∗ · 100%, where fk is the cost of solution found in the
k-th trial and f ∗ is the optimal cost. In what follows, Fbst will denote the frequency of
obtaining a solution with the best known cost from the literature, estimated by 30 trials.

A statistical analysis of experimental data is carried out using the significance test
from [5] (see Ch. 8, §2), which is used to compare two algorithms in terms of probability
of finding an optimal or a best-known solution. Let P1 and P2 denote the probabilities
of success for some Algorithm 1 and Algorithm 2, respectively. The null hypothesis
is that P1 = P2. Under the null hypothesis, the estimate of common success rate is
F = (F1 + F2)/2, where F1 denotes the frequency of success in N trials of Algorithm 1,
and F2 is the frequency of success in N trials of Algorithm 2. In our case N = 30. The
difference F1 − F2 can be expressed in units of the standard deviation as the statistic
A = |F1 − F2|/ŜD, where ŜD =

√
2F (1− F )/N denotes the estimate of the standard

deviation. It is appropriate to assume that A is normally distributed if the number of
trials is sufficiently large. The null hypothesis may be tested at a confidence level p by
comparison of the value of A to the quantile of the standard normal distribution zp/2 (e.g.
with p = 0.05, we have z0.025 ≈ 1.96). If A > zp/2, then the null hypothesis is rejected.
In Tables 2–4 and 6, the statistically significant difference (at level p ≤ 0.05) between the
frequencies of finding optimal solutions is indicated by “∗” when mode C is compared to
mode A and by “+” when modes C and A are compared.
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Table 2: Relative errors and frequencies of finding optima in series 4,5 and 6.

Instance Single run mode A Restart mode B New restart mode C
σ Fbst σ Fbst tavg σ Fbst tavg

401 0.117 0.967 0 1 537.6 0 1 760.8
402 0.703 0.833 0 1 537.6 0 1∗ 817.6
403 0.039 0.967 0 1 768.0 0 1 845.4
404 1.154 0.767∗ 0.445 0.3 717.1 0.364 0.4 748.3
405 0.156 0.867 0 1 455.4 0.039 0.967 828.0
406 0.554 0.5 0 1 642.4 0 1∗ 770.0
407 0.186 0.867 0 1 488.9 0 1∗ 784.4
408 0.589 0.933 0 1 497.6 0 1 798.8
409 1.451 0.533 0.125 0.867 738.7 0.062 0.933∗ 796.6
410 0.117 0.933 0 1 657.0 0 1 803.8
501 1.976 0.433 0 1 752.6 0.079 0.967∗ 803.8
502 1.987 0.667 0.066 0.933+ 691.2 0.397 0.633 793.8
503 0 1 0 1 413.8 0 1 777.7
504 1.033 0.333 0.041 0.967 586.0 0 1∗ 839.0
505 4.171 0.333 2.559 0.267 373.4 2.417 0.367 684.9
506 0 1 0 1 249.1 0 1 759.7
507 0.785 0.233 0.307 0.7 889.4 0.273 0.733∗ 792.7
508 0.486 0.767 0 1 518.0 0 1∗ 766.3
509 0.251 0.767 0 1 317.3 0.036 0.967∗ 770.4
510 1.245 0.567 1.132 0.6 457.6 1.396 0.5 765.3
601 0.87 0.867 0.145 0.967 174.9 0.29 0.933 711.0
602 0.89 0.667 0 1 165.9 0 1∗ 667.5
603 0 1 1.034 0.833 145.0 0 1+ 661.9
604 0 1 0 1 127.8 0 1 1014.9
605 1.677 0.7 0 1 189.1 0 1∗ 664.5

average 0.817 0.74 0.231 0.901 485.2 0.217 0.892 773.9

5.1 Experiments with Randomly Generated Problems

In the experiments described in this subsection, the total budget, counting all restarts
during the GA trial, was set to 10000 tentative solutions. For all randomly generated
problems, the mutation probability pm is 0.1. Tables 2, 3 and 4 show the results of
experiments with series 4-6, a,c,d and e,f,g,h. The optimal solution values are known for
all instances of these series (see e.g. [38]). The highest frequency of obtaining optima is
indicated in bold. In series b, all runs yielded optimal solutions regardless of a restart
rule, therefore we skip series b in Table 3. Tables 2, 3 and 4 also show the average number
of iterations tavg (over 30 runs) that were made until the restart rule terminated a GA.
The symbol “–” indicates the cases where no restarts were made, until an optimum was
found, or the total budget of 10000 iterations was reached.

Comparing the GA results in modes A and C reported in Tables 2–4, one can see that
among 37 instances, where these two modes yield different frequencies Fbst, mode C has
a higher value Fbst in 31 cases and in 16 out of these 31 cases the difference is statistically
significant. Mode A has a statistically significant advantage to mode C only on a single
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Table 3: Relative errors and frequencies of finding optima in series a,c and d.

Instance Single run mode A Restart mode B New restart mode C
σ Fbst σ Fbst tavg σ Fbst tavg

a1 1.344 0.133 1.067 0.1 501.9 1.146 0.033 773.1
a2 0.476 0.867 0.159 0.933 845.2 0.278 0.833 810.8
a3 1.207 0.2 0.862 0.333 541.8 0.819 0.367 756.3
a4 2.051 0.567 0.256 0.8 672.3 0.427 0.667 797.4
a5 0.89 0.3 0.466 0.633 465.9 0.381 0.7∗ 752.9
c1 0.661 0.8 0.088 0.933 566.9 0.264 0.8 803.8
c2 0.868 0.467 0 1 523.9 0 1∗ 838.0
c3 1.811 0.533 0.288 0.767 763.7 0.37 0.7 889.0
c4 0.091 0.933 0 1 392.4 0 1 1017.0
c5 0.419 0.8 0 1 440.7 0 1∗ 839.4
d1 0 1 0 1 – 0 1 –
d2 0 1 0 1 120.9 0 1 –
d3 0.417 0.9 3.333 0.333 127.8 0 1+ 709.1
d4 0 1 0.806 0.833 108.3 0 1+ 932.4
d5 0 1 0 1 120.1 0 1 –

average 0.682 0.7 0.488 0.778 – 0.246 0.807 –

Table 4: Relative errors and frequencies of finding optima in series e,f and h.

Instance Single run mode A Restart mode B New restart mode C
σ Fbst σ Fbst tavg σ Fbst tavg

e1 0 1 0 1 – 0 1 –
e2 0 1 0.667 0.933 114.5 0 1 662.7
e3 0 1 0 1 104.4 0 1 –
e4 0 1 0 1 102.3 0 1 –
e5 0 1 0 1 203.3 0 1 –
f1 0 1 0 1 101.0 0 1 –
f2 0 1 0 1 – 0 1 –
f3 0 1 0 1 101.7 0 1 473.1
f4 0 1 0 1 102.8 0 1 –
f5 22.308 0.033 23.077 0 110.9 22.308 0.033 579.9
g1 0.852 0.733 0 1 198.0 0 1∗ 816.0
g2 2.078 0.4 1.234 0.367 296.0 1.104 0.433 874.6
g3 2.831 0.033 2.53 0 268.6 1.747 0.067 892.3
g4 2.262 0.4 0.595 0.833 228.1 1.071 0.633 819.3
g5 0.952 0.667 0 1 271.6 0 1∗ 905.8
h1 4.762 0 4.762 0 136.3 4.762 0 777.0
h2 4.762 0 4.762 0 124.1 4.762 0 406.8
h3 0.169 0.967 3.898 0.233 142.0 0.508 0.9+ 825.6
h4 0 1 2.759 0.467 139.9 0 1+ 829.2
h5 0 1 0 1 111.0 0 1 –

average 2.049 0.712 2.214 0.692 – 1.813 0.753 –
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Table 5: Average time (sec.) and number of covers generated till finding optima

Instance Single run mode A Restart mode B New restart mode C
opt. time tent. sol. opt. time tent. sol. opt. time tent. sol.

503 0.53 1364.0 1.09 1996.9 0.39 1256.0
603 0.09 2264.5 0.11 2962.6 0.08 1869.5
d1 0.04 129.5 0.04 136.1 0.03 127.9
d2 0.34 325.6 0.66 731.8 0.23 320.5
d5 0.05 174.7 0.05 166.5 0.04 144.4
e1 0.01 101.8 0.02 101.2 0.02 101.6
e3 0.19 249.0 0.35 558.1 0.24 293.5
e4 0.18 245.5 0.38 690.4 0.31 257.6
e5 0.05 137.7 0.05 137.3 0.05 132.6
f1 0.11 177.1 0.19 231.6 0.06 152.5
f2 0.03 107.3 0.03 107.4 0.03 107.6
f3 1.04 509.6 1.1 1596.8 0.64 594.3
f4 0.34 243.5 0.5 592.1 0.20 281.9
h5 0.31 235.0 0.45 423.4 0.25 211.3

average 0.236 447.486 0.359 745.157 0.184 417.943

instance 404.
In these tables, modes B and C show different frequencies Fbst on 28 instances. On 16

of these 28 instances, mode C has a higher value Fbst than mode B and in 5 out of these
16 cases the difference is statistically significant. Mode B has a statistically significant
advantage to mode C only on a single instance 502. In terms of percentage of deviation σ,
averaged over all instances of series 4-6, a,c,d and e,f,g,h, mode C gives the least error
(see the row "average").

The restart mode C terminated the GA later than mode B in most of the cases. This
seems to be natural because the restart rule of mode B is based solely on the values of
objective function of the obtained solutions, while the new restart rule uses the information
about the generated covers and their frequencies. In particular, in those cases where
mode C yielded statistically greater frequency of finding the optima, compared to mode B,
the average number of iterations tavg in mode C was 4-8 times larger than in mode B.

To evaluate the overall CPU cost of NBGA execution with the new restart rule (includ-
ing the CPU time for Schnambel Census estimate ν̂ML), we considered those instances,
where the frequency of finding optima was equal to 100% (see Table 5). On average, in
terms of the CPU time and in terms of the total number of tentative solutions made until
first visiting an optimum, mode C tends to be more efficient than the other two. Here the
CPU time is not proportional to the number of tentative solutions because the individuals
of initial populations are computed faster than the offspring in the main loop of NBGA.

5.2 Experiments on Combinatorial Unicost Problems

The three modes of running the GA were also tested on two series of combinatorial unicost
SCP instances. In the experiments described in this subsection, the total budget, for each
GA trial, was set to 10000 tentative solutions as in the previous subsetion. The set of
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Table 6: Frequencies of finding optimal solutions in series clr and Stein.

Instance Rows Columns Best known Single run Restart New restart
m n solution mode A mode B mode C

Fbst Fbst tavg Fbst tavg

clr10 511 210 25 0.2 0.033 119.8 0.433∗+ 746.2
clr11 1023 330 23 0.433 0 104.7 0.433+ 724.0
clr12 2047 495 23 0.467 0.267 124.1 0.567 775.4
clr13 4095 715 23 0.033 0 113.9 0 899.7

Stein27 117 27 18 1 1 – 1 –
Stein45 330 45 30 0.867 0.967 101.0 1∗ 636.5
Stein81 1080 81 61 1 1 101.6 1 1328.5
Stein135 3015 135 103 0 0 111.6 0 684.8
Stein243 9801 243 198 0.833 0.667 111.7 1∗+ 680.0

problems clr is derived from one of the well-known questions of P. Erdös [8], stated as a
unicost SCP (see e.g [15]) which turns out to be very hard for exact solvers. The series of
problems Stein arise from Steiner triple systems, and it was proposed in [12] as a set of
examples of hard problems that can be used for evaluation of different algorithms. Table 6
shows the dimensions of the unicost SCP instances considered in this paper. Columns
Fbst and tavg have the same meaning as in tables above. To the best of our knowledge,
optimality of the best-known solutions indicated in this table is proven only for Stein
series [25]. Again we use the population size of 100 individuals and the total budget of
GA iterations, equal to 10000 in each trial. The mutation probability pm is set to 0.01 for
all instances.

On the combinatorial unicost instances, restart mode C shows better or equal results
compared to the other two modes, except for a single instance clr13. Column tavg indicates
that the restart rule of mode B triggers too early, precluding the GA from finding good
solutions. This is more evident than in the case of randomly generated instances because
the combinatorial unicost instances tend to have large plateaus of solutions with equal
objective function values. On clr13, the best known solution was found only in mode A and
it took more than 4000 iterations. Mode C was irrelevant on this instance, probably due to
a negative bias of the maximum likelihood estimate ν̂ML from formula (1) (see [11, 31, 32]).

5.3 Reduced Iterations Budget

We repeated the experiments of Subsections 5.1 and 5.2 with the total iterations budget
reduced to 5000 and obtained the following results.

Comparing the GA results on randomly generated problems in modes A and C,
among 41 instances, where these two modes yielded different frequencies Fbst, mode C
had a higher value Fbst in 29 cases and in 15 out of these 29 cases the difference was
statistically significant. Mode A had a statistically significant advantage to mode C only
on instances 404 and a4.

Modes B and C showed different frequencies Fbst on 35 randomly generated instances.
On 21 of these instances, mode C had a higher value Fbst than mode B and in 5 out
of these 21 cases the difference was statistically significant. Mode B had a statistically
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significant advantage to mode C only on two instances 502 and a4. In terms of percentage
of deviation σ, averaged over all instances of series 4-6, a,c,d and e,f,g,h, mode C gave
the least error.

On the combinatorial unicost instances, none of the modes significantly outperformed
the other ones, presumably because 5000 iterations is a relatively short budget for these
series and the restarts do not improve the results.

5.4 Increased Iterations Budget

We also repeated the experiments of Subsections 5.1 and 5.2 with the total iterations
budget increased to 15000 and obtained the following results.

Comparing the GA results on randomly generated problems in modes A and C,
among 38 instances, where these two modes yield different frequencies Fbst, mode C has
a higher value Fbst in 35 cases and in 20 out of these 35 cases the difference is statistically
significant. Mode A has a statistically significant advantage to mode C only on three
instances 404, 502 and a1.

Modes B and C showed different frequencies Fbst on 22 randomly generated instances.
On 14 of these instances mode C has a higher value Fbst than mode B and in 3 out of these
14 cases the difference is statistically significant. Mode B has a statistically significant
advantage to mode C on two instances 502 and 507. In terms of percentage of deviation σ,
averaged over all instances of series 4-6, a,c,d and e,f,g,h, mode C gives the least error.

On the combinatorial instances, mode C shows better or equal results compared to
the other two modes, except for a single instance Stein45, where it was outperformed by
mode B but the difference in this case was not statistically significant. At the same time,
mode C had a statistically significant advantage to mode B in 4 cases. Mode B performed
poorly on these instances, showing a relative error on average by a factor of 1.5 greater
than modes A and C.

Experiments with randomly generated SCPs are summarized in Figures 1, 2.

Figure 1: Number of instances where modes A or C have a greater frequency of find-
ing optima for randomly generated SCPs: The top segments show the instances with
statistically significant difference in frequency
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Figure 2: Number of instances where modes B or C have a greater frequency of find-
ing optima for randomly generated SCPs: The top segments show the instances with
statistically significant difference in frequency

6 Conclusions
A new restart rule is proposed for Genetic Algorithms, using the Schnabel Census method,
originally developed for statistical estimation of size of animal populations. The perfor-
mance of the new restart rule is demonstrated on a steady-state GA with non-binary
representation for the Set Cover Problem. Computational experiments show a significant
advantage of the GA with the new restarting rule over the GA without restarts and the
GA restarted as soon as the current iteration number becomes twice the iteration number
of the currently best incumbent.

Applying Schnabel Census in this research is an attempt to further benefit from the
convergence between computer science and biology. That interface had been crucial for
evolutionary computation to emerge, but was scarcely maintained afterwards [26]. As the
present research shows, developing this transdisciplinary integration can be productive.

Further improvements of the restart strategy are expected via usage of less biased
methods, developed for estimation of the number of local optima and for estimation of
the abundance of populations, see e.g. [11, 17]. The further research might address the
usefulness of the proposed restart rule for other types of evolutionary algorithms and
other optimization problems. The Schnabel Census method may be also applicable for
a dynamical control of the mutation, if instead of restarting, the GA would increase the
mutation probability by a certain factor.
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