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Abstract

The field of evolutionary algorithms (EAs) emerged in the area of computer
science due to transfer of ideas from biology and developed independently for
several decades, enriched with techniques from probability theory, complexity
theory and optimization methods. Our aim is to consider how some recent results
form EA theory may be transferred back into biology. It has been noted that
the EAs optimizing Royal Road fitness functions may be considered as models
of evolutionary search for the gene promoter sequences Үfrom scratchҰ. Here we
consider the design of synthetic promoters from the EAs methodology viewpoint.
This problem asks for a tight cluster of supposedly unknown motifs from the initial
random (or partially random) set of DNA sequences using SELEX approaches.
We apply the upper bounds on the expected hitting time of a target area of
genotypic space, the EA runtime, in order to upper-bound the expected time to
finding a sufficiently fit series of motifs (e.g. binding sites for transcription factors)
in a SELEX procedure. On the other hand, using the EA theory we propose
an upper bound on expected proportion of the DNA sequences with sufficiently
high fitness at a given iteration of a SELEX procedure. Both approaches are
evaluated in computational experiment, using a Royal Road fitness function as a
model of the SELEX procedure for regulatory FIS factor binding site. Our results
suggest that some theoretically provable bounds for EA performance may be used,
at least in principle, for a-priory estimation of efficiency of SELEX-based approaches.
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1 Introduction
The field of evolutionary algorithms (EAs) emerged in the area of computer science as a
transfer of ideas from biology and developed independently for several decades, enriched
with techniques from probability theory, complexity theory and optimization methods.
Our aim is to consider how some recent results in theory of EAs may be transferred back
into biology.

SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedures are
known as a valuable tool in identifying DNA and RNA sequences with high affinity for
a pre-specified target proteins/molecules. However, SELEX procedure is time-consuming
and costly. Therefore, in parallel with the practical in vitro procedures for selection and
evaluation of DNA and RNA sequences, in silico approaches have been developed to
predict the high-affinity sequences, allowing to reduce time and cost (see e.g. [4]). Most
of the in silico studies focus on selecting the configurations with the highest probability
to be found in vitro. In contrast to this, our analysis aims at the prediction of efficiency
of the SELEX procedures, if the contents of individual enhancer are already known or
expected to some degree.

Here we proceed from the consideration that the biotechnological approaches like SE-
LEX, could be treated as the experimental implementations of EA. Experimenters cycli-
cally evaluate, mutate and apply selection to the populations of nucleic acid molecules
to breed the desired sequence (particularly, the promoter sequence). We noticed that
typical organization of the gene-regulatory element can be treated as the molecular im-
plementation of the well-known Royal Road functions in EA [10]. As it is the case of
the Royal Road functions (namely the function R3 from [8]), the desired sequence (in
DNA-alphabet) must include several short stretches of nucleotides (called as sites) with
exact consensus sequence (or closely related to it), as shown in Fig. 1. The sequences of
the spacers between the sites are arbitrary, but the size of the spacers is often important.
Each site serves as the target for specific binding of the DNA-binding factor (Fig. 1) and
this specific binding is laid in the basis of the regulatory element functioning (regulation
of the gene activity by its regulatory factors). As it is the case of the Royal Road fitness
functions in EA, the desired sequence is sought by experimenters from scratch. The find-
ing of each new site raises the whole sequence fitting level by discrete step. The order of
the sites finding is arbitrary. There are some dissimilarities between optimization of the
Royal Road functions and the problem to breed the gene-regulatory element via SELEX.
One of the crucial differences is that each site in a Royal Road function (a building block
in the EA terms) has the only sequence, while in biology each site is the family of closely
related sequences with (slightly or moderately) different affinity (fitness level). Here we
do not study the difference in details.

On the one hand, the general upper bound on expected hitting time of a target area
of genotypic space by EA (the EA runtime) from [3] allows to upper-bound the expected
time to finding a sufficiently efficient series of motifs (e.g. binding sites for transcription
factors) in a SELEX procedure. On the other hand, the theoretical approach [5] yields
upper bounds on expected proportion of the DNA sequences with sufficiently high fitness
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Figure 1: An example of gene-regulatory element Џ enhancer and its consideration from
the EA viewpoint. Enhancer typically is a cluster of specific sites for binding by the
DNA-binding factors Џ activators. Each site is a set of short sequences varying by its
exact affinity levels for their factor. The sites are usually separated by spacer sequences.
The binding sites are presented by rectangles and by sequences logos. W is arbitrary
nucleotide

at a given iteration of SELEX procedure. Both approaches are evaluated in computational
experiment, using a Royal Road fitness function as a model of SELEX procedure applied
to regulatory element for FIS factors.

A practical case, resembling to our study, may be found in the results of in vivo ge-
netic selection (function-based in vivo SELEX) with Turnip Crinkle Virus sequences [12],
where 28 bases of the viral regulatory element motif1-hairpin were randomized and then
subjected to selection in plants. Most of the winners in this experiment contained up to
three short motifs (5-7 bp), many of which are found in other promoter elements of the
virus.

2 Gene Regulatory Regions
It is known that a gene consists of coding and regulatory parts. Regulatory part of simply
organized genes typically include promoter and enhancer, as illustrated by Fig. 2. We will
focus on the enhancer.

An enhancer is a short region of DNA that can be specifically bound by proteins
(transcription factors) to increase the likelihood that transcription of a particular gene will
occur. Usually the DNA-binding factors, having affinity to an enhancer, are activators.
Typically an enhancer is a cluster of sites for recognizing and binding by transcription
factors and other DNA-binding factors (as illustrated by Fig. 2). Each DNA-binding
site is a relatively short sequence of base pairs (bp) similar with or identical to the, so
called, consensus sequence for a given DNA-binding factor. The closer the site sequence
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Figure 2: The E.coli ribosomal RNA (rrn) operon as the example of the prokaryotic genes
with enhancers. Each of the regulatory regions consists of the core promoter and Upstream
Activation Region (UAR). The UAR includes UP element and the cluster of binding sites
(3-5 sites) for the DNA-binding factor FIS. The distances between the neighbor FIS-sites
are equal or multiple to 20-21 base pairs (bp). (A) Schematic representation of seven rrn
operon regulatory regions. (B) The scheme of idealized rrn gene with the cluster of five
equally-distanced FIS binding sites. P1 - first promoter. Negative numbers mark positions
(in bp) from the transcription initiation site for the diverse regulatory sites of the core
promoter and UAR. Core promoter consists of the Ҫ-10Ў and Ҫ-35Ў sites. Broken arrow
indicates the transcription initiation site and the transcription direction [6].

to the consensus, the higher is the probability that the factor find and bind to it and the
higher is the binding strength. The more effective the factor binding to its DNA-binding
site, the higher the probability for the gene to start transcription. Here we will use the
well known and exhaustively studied example of the prokaryotic enhancer (also known
as the Upstream Activation Region) for the family of the E.coli ribosomal RNA genes
(ribosomal operon), as shown in Fig. 2. This is one of the best studied and relatively
simply organized prokaryotic genes with enhancer. This regulatory element includes a
cluster of DNA-binding sites for the regulatory factor FIS (Fig. 2).

2.1 Binding Sites for the FIS Factor

Not only the DNA-binding site sequences, but also the order and the distances between
the neighbor sites can be crucial for the enhancerЎs proper functioning. Some authors
call it as the grammar for the gene-regulatory elements [7]. In the FIS-site cluster it is
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crucial that the beginning points for the neighbor sites tend to be separated by distances
equal or multiple to 20-21 bp (see 2). This feature is supposed to be related with the
DNA double helix turn (20-21 bp corresponds to two turns). For our consideration we
will use the Simplifying Assumption 1: the distance between the beginnings of the sites is
multiple to the constant (large than the site length). For the FIS sites the constant would
be 20 bp.

Figure 3: Consensus logo for the factor FIS. Position is counted in bp from the middle of
the consensus sequence: the site is palindromic. Position Ү-4Ұ can keep any base except
A, position Ү+4Ұ can keep any base except T [11].

Let us now point the attention to the FIS-site details crucial for our following consid-
erations. As we mentioned, a binding site for a given factor is not a unique sequence but
a family of similar sequences with different affinities for the factor. To represent the set
of sequences and their (estimated) affinity levels, the sequence logo representation was
introduced. It consists of a stack of letters at each position. The relative preference for
different letters at each position is represented by their relative heights. The total height
of the stack of the letters represents the information content of the position (measured in
bits), equal to the original entropy of this position minus its a posteriori enthropy value
(in the sense of Shannon). The sequence logo for the FIS binding sites is shown in Fig. 3.
It can be seen from this figure that we can make Simplifying Assumption 2: Each position
of the FIS binding site has either one or two appropriate letters. In what follows, we will
consider a binding site as active if the DNA sequence has appropriate letters in all of its
positions.

3 The Non-Elitist Evolutionary Algorithm with (µ, λ)-
Selection as a Model of SELEX

3.1 Outline of the Algorithm

Consider a maximization problem:

max{φ(x) : x ∈ An}, (1)
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where φ is the objective function (called fitness function in the EA literature), A is an
alphabet for solutions encoding, e.g. {0, 1} in the case of computer systems or {A,C,G, T}
if (1) is considered as a model of adaptation in genetics.

In the field of evolutionary algorithms, the problems of the form (1) are solved heuris-
tically by modelling a population of individuals that undergo random mutation, selection,
and sometimes crossover (see e.g. [1]). The evolutionary process that is associated with
such transformations of the population is expected to guide the search towards an optimal
(or locally optimal) solution. Sometimes the convergence to optimum may be guaranteed
as time tends to infinity [9] or upper bounds may be proven for the expected number of
tentative solutions evaluated until an optimum was found [1, 3].

Let An denote the space of genotypes and let λ be the population size. A population
of λ individuals (represented by their genotypes) on the EA iteration t is denoted by

X t = (x1t, . . . , xλt) ∈ Anλ,

where xkt is an individual number k in X t, k = 1, . . . , λ. During the mutation, a subset of
genes in the genotype string x is randomly altered. Given a genotype x, the output of a
mutation operator may be viewed as a random variable Mut(x) ∈ X with the probability
distribution depending on x. The most frequently used type of this operator, the bitwise
mutation randomly changes each gene of x with a given mutation probability pm. In this
paper, we will consider only the bitwise mutation, assuming that a new value for any
mutated gene xi is chosen at random from A\{xi}. In (µ, λ)-selection operator, parents
are sampled uniformly at random among the fittest µ individuals in the population. The
overall scheme of the EA considered in this paper is as follows.

1. Generate the initial population X0.
2. For t := 0 to tmax − 1 do

2.1. For k := 1 to λ do
2.1.1. Choose a parent genotype x from X t

by (µ, λ)-selection.
2.1.2. Add x(t+1)

k = Mut(x) to the population X t+1.
3. Output the best incumbent x̃t, i.e.

the fittest genotype in X0, . . . , X t.

In theoretical studies, the EAs are usually treated without a stopping criterion. There-
fore we will also assume that tmax =∞. The described EA may be considered as a simpli-
fied version of a genetic algorithm (see e.g. [9]), which does not use a crossover operator
in our case.

3.2 Modeling SELEX for Gene Regulatory Region

3.2.1 SELEX described in brief

SELEX procedure for DNA sequences in vitro works as follows [4]. Initially a chemically
synthesized DNA library is incubated with target molecules. Unbound molecules are re-
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moved and the target/DNA complex is split. Released DNA sequences (µ best individuals
in terms of the EA) are amplified by the PCR reaction with possible modifications by
mutations (the next population of λ individuals is built) and the next round of selection
is performed. Typically, this process is repeated for several or more than 20 rounds.
Analogous procedure may be applied to RNAs. In some cases the SELEX procedure may
be implemented in vivo or in silico, or in combination. Unlike the in vitro SELEX, the
function-based in vivo SELEX searches for functional sequences that contribute to the
fitness of the molecule [12].

EAs generally and genetic algorithms in particular can be used as the approach to
simulate SELEX procedures, as well as, some other related experimental techniques in
modern bioengineering. Here we consider the EA as a model of SELEX for gene-regulatory
elements with many sites.

3.2.2 Royal Road functions as a model of FIS promoter

Royal Road functions were introduced and used to study the significance of the building
block hypothesis for crossover operators [8]. Here we use the Royal Road functions to model
the design of the gene regulatory elements from scratch in the experimental approaches
of in vitro evolution, such as SELEX.

The original definition of a Royal Road function [8] is formulated for the binary al-
phabet A = {0, 1}n, assuming that a set S of schemata is given. Each scheme s ∈ S is
an n-element string of symbols from the alphabet A ∪ {"*"}. A string x ∈ A is called
an instance of scheme s iff xi = si for all positions where si 6= "*". Suppose that a
set of positive weights cs, s ∈ S is given. In [8], the Royal Road function is defined as
φ(x) :=

∑
s∈S cs[x is an instance of s]. Here and below, [·] denotes the Iverson bracket:

[P ] :=

{
1, if P is true;
0 otherwise.

for any statement P that can be true or false.
One of the frequently used versions of Royal Road functions in computer science (see

e.g [3]) is defined for A = {0, 1}, assuming n/r unweighted non-overlapping schema with
r fixed positions per scheme (these positions are called a block):

RoyalRoadr(x) :=
n/r−1∑
i=0

r∏
j=1

xir+j.

In this paper, we generalize the definition of Royal Road functions, including the non-
binary alphabets and schema positions with two appropriate letters, in order to model
the FIS binding sites. Without loss of generality, we will assume that all positions with
a single appropriate value require the last letter a|A| of the alphabet A and they occupy
the first r1 positions of each block, all positions with two appropriate letters admit the
last two letters a|A|−1, a|A| of the alphabet and they occupy the remaining r2 positions
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of each block, r = r1 + r2. We will denote this generalized Royal Road function as
RoyalRoadr1,r2(x), assuming it to equal

n/r−1∑
i=0

r1∏
j=1

[xir+j = a|A|]
r∏

j=r1+1

[xir+j ∈ {a|A|, a|A|−1}].

Considering the example of [12], where the SELEX procedure yielded up to three
active binding sites, we make Simplifying Assumption 3: The selection criterion employed
in the SELEX procedure is an increasing function of the number of active binding sites
in a string x. In view of the simplifying assumptions 1–3, the binding strength of FIS
promoter may be modeled by the generalised Royal Road function with 4 to 6 blocks
(each block corresponds to a separate binding site of FIS factor) where r1 = 2, r2 = 6.
The search space consists of strings of length n = 32, 40 or 48 with symbols from the
4-letter alphabet A = {A,C,G, T}.

4 Theoretical Analysis of the Non-Elitist Evolutionary
Algorithm with (µ, λ)-Selection

4.1 Upper Bounds on Proportion of Fit Genotypes in Population
of Evolutionary Algorithm

Assume that φ0 := min{φ(x) : x ∈ X} and there are d level lines of the fitness function
fixed so that φ0 < φ1 < φ2 . . . < φd. Let us define d+ 1 subsets of X

Hi := {x : φ(x) ≥ φi}, i = 0, . . . , d.

Obviously, H0 = X . For the sake of convenience, we define Hd+1 := ∅. Also, we denote
the level sets Ai := Hi\Hi+1, i = 0, . . . , d which give a partition of X . Now suppose that
for all i = 0, ..., d and j = 1, ..., d, the a priori upper bounds βij on mutation transition
probabilities from subset Ai to Hj are known in step 2.1.2 of the EA:

Pr{Mut(x) ∈ Hj | x ∈ Ai} ≤ βij.

Fig. 4 illustrates the transitions considered here.
In what follows, B denotes the matrix with elements βij, i = 0, ..., d, j = 1, ..., d. Let

the population on iteration t be represented by the population vector

z(t) = (z
(t)
1 , z

(t)
2 , . . . , z

(t)
d )

where z(t)i ∈ [0, 1] is the proportion of genotypes from Hi in X t. The population vector
z(t) is a random vector, where z(t)i ≥ z

(t)
i+1 for i = 1, ..., d− 1 since Hi+1 ⊆ Hi.

Let Pr{x(t) ∈ Hj} be the probability that an individual, which is added after selection
and mutation into X t, has a genotype in Hj, j = 0, ..., d, t > 0. According to the scheme of
the EA, Pr{x(t) ∈ Hj} = Pr{x(t)1 ∈ Hj} = ... = Pr{x(t)λ ∈ Hj}. The following proposition
is easy to prove (see e.g. Proposition 1 in [5]).
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Figure 4: Transitions from Hi\Hi+1 to Hj during mutation.

Proposition 1 For all t > 0, i = 1, ..., d holds E[z
(t)
i ] = Pr{x(t) ∈ Hi}.

Let Pch(zi) denote the probability to choose a parent individual from Hi. By the definition
of (µ, λ)-selection,

Pch(zi) =

{
ziλ/µ, if zi ≤ µ/λ,
1, otherwise.

By a reasoning similar to that in Subsection 3.1 of [5] we conclude that

Pr{x(t+1) ∈ Hj|z(t) = z} ≤
d∑
i=0

βij(Pch(z
(t)
i )− Pch(z

(t)
i+1)),

implying the upper bounds

E[z
(t+1)
j ] ≤ βdj −

d∑
i=1

(βi,j − βi−1,j) E[1− Pch(z
(t)
i )] (2)

for the expected proportion of genotypes with fitness above each of the given levels
φ1, . . . , φd.

A ((d + 1) × d)-matrix B is called monotone iff βi−1,j ≤ βij for all i, j from 1 to d.
Monotonicity of a matrix B = (βij)means that the greater fitness levelAi a parent solution
has, the greater is its bound on transition probability to any subset Hj, j = 1, . . . , d. In
other words, it means that βi,j − βi−1,j ≥ 0.

The following proposition is proved analogously to Proposition 4 in [5].

Proposition 2 If B is monotone then for all j = 1, . . . , d

E[z
(t+1)
j ] ≤ βdj −

d∑
i=1

(βij − βi−1,j)
(
1− Pch(E[z

(t)
i ]
)
. (3)

By an iterative application of inequality (3), the components of the expected pop-
ulation vectors E[z(t)] may be bounded up to an arbitrary t, starting from the initial
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vector E[z(0)], describing the population X0. Note that the obtained estimate is indepen-
dent of the population size and valid for arbitrary λ.

In the case of RoyalRoadr1,r2 function, we will use the term 1-block for any block
complying with its scheme (i.e. all r1 positions that require the concensus value, are
given the concensus vlaue and in all r2 positions that admit two options, one of the two
admissible values is assigned). Otherwise we will call the block a 0-block. The transition
probabilities between the 0- and 1-states of the block during mutation are as follows:

Pr(0→ 1) ≤ 2
3
pm; Pr(0→ 0) = 1− Pr(0→ 1);

Pr(1→ 1) =
(
1− pm + 1

3
pm
)r2 (1− pm)r1 ;

Pr(1→ 0) = 1− Pr(1→ 1).
It is natural to assume that d equals to the number of blocks n/(r1 + r2) and the

subsets H0, ..., Hd correspond to the level lines φ0 = 0,φ1 = 1,..., φd = d. The matrix of
upper bounds B may be found by the explicit formula (20) from [5], denoting r̃ := 2

3
pm.

This matrix B satisfies the monotonicity property, provided that r̃ ≤ Pr(1 → 1), e.g. in
the case of r1 = 2, r2 = 6 this holds for all pm < 1/4.

4.2 Theoretical Upper Bound on the EA Runtime

Let T denote the random variable, equal to the number of tentative solutions evaluated
until some element of the current population is sampled from Hd for the first time. In
the case when Hd is the set of optimal solutions, T is usually called the runtime of an
evolutionary algorithm. The topic of constructing lower and upper bounds on the runtime
of different evolutionary algorithms is much more popular, compared to bounding the
abundance of sufficiently fit individuals as it was presented in Subsection 4.1.

Suppose that a lower bound p0 is known for the probability not to reduce the fitness-
level of any genotype under mutation, i.e. Pr{Mut(x) ∈ Hj | x ∈ Aj} ≥ p0 for all
j = 1, . . . , d− 1.

Besides that, let us suppose that for each level j = 0, . . . , d− 1 some lower bounds sj
are known for the improving probabilities, i.e. Pr{Mut(x) ∈ Hj+1 | x ∈ Aj} ≥ sj for all
j = 0, . . . , d− 1. Denote s∗ := minj=0,...,d−1 sj.

The Level Theorem for bounding the runtime of non-elitist EAs [3] implies the follow-
ing

Corollary 1 If the EA with (µ, λ)-selection is used with

• sufficiently small ratio µ/λ, such that µ/λ ≤ p0/(1 + δ) for some δ ∈ (0, 1],

• sufficiently large population size, such that λ ≥
(

4λ
δ2µ

)
ln
(

128(d+1)λ
s∗δ2µ

)
then the expected EA runtime satisfies the inequality

E[T ] < UB :=

(
8

δ2

) d−1∑
j=0

(
λ ln

(
6δλ

4 + µsjδ

)
+

λ

µsj

)
.
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It is easy to verify that if RoyalRoadr1,r2 function is used as the fitness function in
the EA, then we can assume:

p0 := (1− pm)(d−1)r1
(
1− 2pm

3

)(d−1)r2
,

s∗ :=
(pm

3

)r1 (2pm
3

)r2 (
(1− pm)r1

(
1− 2pm

3

)r2)(d−1)

(4)

sj := (d− j)s∗, j = 0, . . . , d− 1. (5)

5 Application of Bounds from EA Theory to SELEX-
Type Procedure

5.1 Ratio of Optimal Individuals in Computational Experiment
and the Upper Bound for It

Below we present the experimental results in comparison with the theoretical estimates
obtained in Subsection 4.1. To this end we consider an application of the EA to the
RoyalRoad2,6 fitness function, modelling SELEX for 5 FIS sites. The average proportion
of sufficiently fit genotypes for three different fitness levels is presented in Fig. 5. Here
λ = 10000, µ = 100, pm = 0.1. (Note: it can be shown analogously to Theorem 3 [5] that
with increasing population size λ, upper bound (3) becomes tighter.)

The statistics is accumulated over 1000 runs of the algorithm and one individual x(t)1

for each t is checked for hitting the target subset Hd, Hd−1 or Hd−2. Note that E[z
(t)
i ] =

Pr{x(t)1 ∈ Hi} by Proposition 1 and e.g. for Hd at a given t we have a series of 1000
Bernoully trials with a success probability Pr{x(t)1 ∈ Hd}, estimated from the experimental
data, together with the 95%-confidence interval.

The experimental results are shown in dashed lines. The solid lines correspond to the
upper bounds obtained by the iterative application of (3).

As it can be seen from Fig. 5, after approximately 50 iterations the upper bound from
Proposition 2 becomes relatively close to the true value of proportion of near-optimal
genotypes.

5.2 Expected Runtime Bound Compared to Computational Ex-
periment

In order to evaluate the upper bound on the EA expected runtime, suggested by Corol-
lary 1, we have carried out a computational experiment with 1000 independent runs of
the EA, given the mutation probability pm = 0.1.

Application of the runtime bound to the case of FIS-enhancer, modelled by the Royal
Road function with r1 = 2, r2 = 6, n = 32, i.e. 4 blocks, assuming λ = 5000, µ = 500, in
the EA gives UB = 3.9 · 1013, while the experimental average runtime is T̂exp = 172190.
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Figure 5: Comparison of upper bounds (UBz3, UBz4 and UBz5) and experimental esti-
mates for the average proportion of optimal and sub-optimal individuals z5, z4 and z3 in
the population of EA with λ = 10000, µ = 100, pm = 0.1, modelling SELEX for 5 FIS
sites (i.e. the fitness function is RoyalRoad2,6). Confidence intervals are computed with
level 95%.

Application of the runtime bound to the case of r1 = 4, r2 = 2 with 5 blocks and
n = 30 (corresponds to the example from Fig. 1), assuming λ = 2000, pm = 0.1 and
µ = 100 gives UB = 4.852 · 1011, while the experiment gives T̂exp = 98270.

Most likely, the reason for the large over-estimation in the runtime upper bound im-
plied by Corollary 1 is in the over-pessimistic assumption of the block updates under
mutation, used for computing the values s∗ and sj in (4) and (5). These probability
bounds are computed for the worst-case scanrio, assuming that if a binding site does
not meet the binding requirements, then all positions in this site are different from the
consensus. This also agrees with the outcome of our additional experiment where we set
r1 = 0, r2 = 1 and n = 5, obtaining much tighter results: UB = 2293.1 and T̂exp = 1202.4
(in fact the upper bound of Corollary 1 becomes assymptotically tight in this special case
of Royal Road function, known as the OneMax function [3]). Thus, further problem-
specific EA analysis is required in order to keep track of variability of the components in
blocks of the Royal Road function.

6 Conclusions
Two approaches from the theory of evolutionary algorithms (bounding the proportions
of fit individuals in the EA population and bounding the EA runtime) are applied to
model the experimental techniques in modern bioengineering. To this end, the theoretical
bounds obtained by both of the approaches are applied to a non-elitist mutation-based
evolutionary algorithm with (µ, λ)-selection optimizing a generalized Royal Road fitness
function. We argue that this EA may be considered as a model of SELEX procedure of
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in vitro evolution “from scratch” for FIS promoter with many binding sites. Theoretical
predictions are compared to the results of computational experiments.

Our analysis indicates that the considered theoretical bounds (see Subsection 4.1),
in principle, may be used for prediction of abundance of promoter sequences with suffi-
ciently high affinity to a target protein after a given number of iterations of a SELEX
procedure. The upper bounds on the average number of SELEX rounds until the required
sequence is found (see Subsection 4.2) appear to be over-pessimistic. Further research is
needed in order to improve the theoretical bounds so that they may be applied to the
SELEX procedures consisting of just several rounds. More detailed models of the binding
sites may be developed in order to incorporate more details into the structure of the EA
fitness function. Further research is needed further the theoretical prediction and the es-
timates found in computational experiments are compared against the results of practical
experiments.
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