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Abstract. We consider a real-world vehicle routing problem with time
windows, arising in drilling rigs routing and well servicing on a set of sites
with different geographical locations. Each site includes a predetermined
number of wells which must be processed within a given time window.
The same rig can visit a site several times, but the overall number of
site visits by rigs is bounded from above. Each well is drilled by one
rig without preemptions. It is required to find the routes of the rigs,
minimizing the total traveling distance. We also consider a stochastic
generalization of the problem, where the drilling times are supposed to be
random variables with known discrete distributions. New mixed-integer
linear programming models are formulated and tested experimentally.
A randomized greedy algorithm is proposed for approximate solving the
problem in stochastic formulation, if the number of possible realizations
of drilling times is so high that existing MIP solvers are not suitable.
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1 Introduction

The area of exploration or production of gas and oil raises a number of opti-
mization problems for managing the drilling rigs activities that include drilling
and traveling between wells. The widely used approach to modeling and solution
of such problems is based on the Mixed Integer Linear Programming (MILP).
One of the earliest studies in this direction [4], considers a rather complex and
detailed problem of scheduling the drilling and other tasks for several offshore oil
production platforms to maximize the total profit. For the rigs, only the num-
ber of moves are counted, but not the travel distances. In [14], a simpler model
optimizing the drilling durations and travel times is proposed. It also considers
the possibility of rigs outsourcing and compatibilities of rigs and wells. No indi-
vidual time windows for each well are given, but rather a common deadline for
the whole project.
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The problem of our interest was introduced in [7]. In this problem, several
rigs travel between a set of sites, and each site has a certain number of wells to
drill. This problem was classified as the Split Delivery Vehicle Routing Problem
with Time Windows (SDVRPTW). A MIP model based on the classical VRP
model with time windows (see e.g. [15]) was proposed, and solutions found by
a commercial MIP solver were compared to those from Variable Neighborhood
Search metaheuristic [7], [8]. In our paper, we consider a generalization of this
problem, in which it is allowed to re-visit the same site by the same rig. This
feature can be beneficial from the real-life production perspective, but makes
the problem more complicated.

In the mentioned above papers, all the necessary data are supposed to be
deterministic. Here we extend the study to the case of uncertain drilling dura-
tions, assuming that they are random variables with known discrete distribu-
tions. Note that a similar assumption is considered in [1] for the scheduling of
a set of offshore oil rigs given that the drilling time is a random variable with
a known distribution. The authors propose a Monte-Carlo approach, in which
the samples of drilling times are simulated and then are used as input data in
the GRASP heuristic. As a result, a set of approximate solutions is built and its
properties are investigated statistically.

Among the classic problems, the closest one to our formulation seems to be
the Split Delivery Vehicle Routing Problem with Time Windows and Uncertain
Service Times. There are many papers devoted to some particular aspects of
this problems, but we are not aware of any research on the case combining all
the indicated problem settings. The problem with random travel and service
times originated from [9]. In [3], this case is extended with the time windows
constraints. Many papers deal with the robust approach, in which the probability
distribution of uncertain parameters are not given, and the solution to be found
must be suitable for all possible realizations of uncertain data. Among these
papers we can mention [13], [10], in which the service times vary within some
convex set. A comprehensive survey of stochastic and robust solution of different
VRP type problems can be found in [11].

The SDVRPTW with possibility to re-visit sites has a similarity with pro-
duction scheduling problems, if one considers rigs as machines, wells as product
orders, and sites as orders of the same type. The distances between the sites cor-
respond to setup or changeover times, which should be minimized, while all prod-
ucts should be produced within the given time windows. The production schedul-
ing problems of such kind were successfully solved using time-decomposition
techniques and MIP-formulations based on the event points approach (see e.g. [2]
[5], [12]).

In our work, we aim at the following three main goals: (i) to compare two
different approaches to defining a MIP formulation of the problem, the one based
on the classical VRP model with time windows (as in [7], [15] etc.) and the one
based on the event points approach [5], (ii) to extend the deterministic problem
formulation to a stochastic optimization problem where the drilling time at each
site is a random value with a known discrete distribution, testing the MIP-solving



techniques for finding exact and approximate solutions to this problem, (iii) to
develop a heuristic capable of solving approximately the stochastic optimization
problems of higher dimension, compared to MIP-solvers.

In order to reach the second goal, we apply a quantille optimization approach
from [6]. This approach is more general than required for our stochastic problem
formulation, since in our case the objective function of any fixed solution (which
consists of a set of rig routes and the assignment of drilling tasks to rigs) is the
total traveling length and does not depend on the random variables. The latter
ones only influence on the feasibility of a solution with respect to time window
constraints. In the stochastic formulation, we assume that a threshold α ∈ (0, 1]
is given and it is required that the obtained solution should satisfy all time
window constraints with a probability not less than α.

2 Deterministic Problem Formulation

We have a set of sites I = {i1, . . . , i|I|} which must be served by a set of vehicles
U = {u1, . . . , u|U |} (drilling rigs). Each site i ∈ I is characterized by the total
number of planned wells ni and the time window (ai, bi], in which all wells should
be drilled. A vehicle can visit site i ∈ I several times, but the total number of
visits of i by all vehicles is bounded by mi ≤ ni. Each well is drilled by one rig
without preemptions. Drilling a well of site i ∈ I by vehicle u ∈ U requires dui
time units. A subset Iu of sites, that can be served by vehicle u ∈ U , is given.
Each vehicle u is initially located at an individual depot idu. The traveling time
between sites i and j for vehicle u is denoted by suij . It is required to find
rigs routes between sites and assignments of wells to rigs minimizing the total
traveling time.

In this section, we propose two models for the considered problem. The first
one is based on the event point approach and the second one uses the classic
approach from VRP theory. Before that, we provide an example which indicates
that there are instances where the same rig visits a site several times in any
optimal solution.

2.1 Illustrative Example

Consider an instance with 6 sites (see Fig. 1) and the following input data. The
number of wells at the sites with odd indices is 5, the number of wells at the
sites with even indices is 8. Time windows:

a1 = 20, b1 = 30, a2 = 10, b2 = 40, a3 = 30, b3 = 40,
a4 = 20, b4 = 50, a5 = 40, b5 = 50, a6 = 30, b6 = 60.
There are 3 drilling rigs. The durations of wells drilling at all sites do not

depend on the assignment of vehicles to wells and all equal to 2 (i.e. dui = 2).
In this example, we suppose that the rigs are identical, i.e., the traveling time
between sites i and j is the same for all vehicles (suij do not depend on u).
The distances between pairs of sites are indicated for each edge, if a direct
transportation is possible. Direct transportation is prohibited between all other



pairs of sites (i.e. suij =∞). Vertex id corresponds to the initial location of the
rigs here (a common depot).

Odd-numbered sites have narrow time windows. For each pair of time win-
dows (ai, bi] and (ai+1, bi+1] for i = 1, 2, 3, the following condition holds: (ai, bi] ⊂
(ai+1, bi+1], i.e. the i-th window is contained in the i+1-st, dividing it into three
parts with durations equal to 10. Thus, if returns of the rigs to previously vis-
ited sites are prohibited, then moving from site i+ 1 to site i is impossible. The
optimal solution with f = 24 is uniquely determined up to the assignment of
rigs to the routes. It is shown in Fig. 1 on the left. The route of each rig has a
unique marking.

If returns to the previously visited sites are allowed, then for each pair of
sites i, i+ 1 for i = 1, 2, 3, the drilling rig can perform part of the work (drill 4
wells) on site i+ 1, then move to site i, do all the work there, return to the site
i+ 1 to process the remaining wells there. The optimal solution with f = 21 is
shown in Fig. 1 on the right. The value of the objective function is smaller by 3,
compared to the case where returns are prohibited.

Based on this example, it is easy to build a family of problems with 6k
sites and 3k machines, with the values of objective function 21k (if returns are
allowed) or 24k (if returns are prohibited) for k ∈ N .

1

2

3

4

5

6

1

1

1

3

3

3

5

5

5

5

5

5

1

2

3

4

5

6

1

1

1

3

3

3

5

5

5

5

5

5

idid

Fig. 1. Optimal solutions in the case of single visits (left) and multiple visits (right).

2.2 MIP Model Based on Event Points

The set of event points for each vehicle u is defined as Ku = {1, 2, . . . , kmax
u },

where kmax
u ≤

∑
i∈Iu mi. Let Ui denote the subset of rigs suitable for site i ∈ I,

i.e. Ui = {u ∈ U : i ∈ Iu}. Introduce the variables:
xuik ∈ {0, 1} such that xuik = 1 iff vehicle u visits site i in event point k;
yuik ∈ Z+ is the number of wells of site i drilled by vehicle u in event point k;
tsuk ≥ 0 is the starting time of works for vehicle u in event point k;

tfuk ≥ 0 is the completion time of works for vehicle u in event point k;
twuk ≥ 0 is the traveling time and waiting time between sites in event points k−1



and k.
tuk ≥ 0 is the traveling time between sites in event points k − 1 and k.

Then the set of feasible solutions is defined as follows:

1 ≤
∑
u∈Ui

∑
k∈Ku

xuik ≤ mi, i ∈ I, (1)

∑
i∈Iu

xuik ≤ 1, u ∈ U, k ∈ Ku, (2)

∑
i∈Iu

xu,i,k−1 ≥
∑
i∈Iu

xuik, u ∈ U, k ∈ Ku, k > 2, (3)

xu,idu,1 = 1, xu,idu,k = 0, xu,i,1 = 0, u ∈ U, i ∈ Iu, k ∈ Ku, k > 1, (4)∑
u∈Ui

∑
k∈Ku

yuik = ni, i ∈ I, (5)

yuik ≥ xuik, i ∈ I, u ∈ Ui, k ∈ Ku, (6)

yuik ≤ nixuik, i ∈ I, u ∈ Ui, k ∈ Ku, (7)

twuk ≥
∑

i∈Iu∪{idu}

suijxu,i,k−1 − smax(1− xujk), (8)

u ∈ U, j ∈ Iu, k ∈ Ku, k > 1,∑
1<k′≤k

∑
i∈Iu

duiyu,i,k′ +
∑

1<k′≤k

twu,k′ ≤
∑
i∈Iu

bixuik + bmax(1−
∑
i∈Iu

xuik), (9)

u ∈ U, k ∈ Ku, k > 1,∑
1<k′<k

∑
i∈Iu

duiyu,i,k′ +
∑

1<k′≤k

twu,k′ ≥
∑
i∈Iu

aixuik, u ∈ U, k ∈ Ku, k > 1. (10)

Here bmax = maxi∈I bi, smax = maxi,j∈I, u∈Ui∩Uj suij . Inequality (1) provides
the upper bound on the number of visits of a site. Constraint (2) implies that in
any event point on rig u at most one site may be served. Constraints (3) ensure
continuous usage of event points, i.e. if an event point is used for visiting some
site, then the previous one is used as well. The initial positions of vehicles are
given by constraints (4). Conditions (5) guarantee that all wells of site i will be
drilled. If a site i is not served by rig u in the event point k (i.e. xuik = 0) then
the number of drilled wells should be zero – this is ensured by inequality (7).
Constraint (6) indicates that at least one well must be drilled if a rig visits site
i. Conditions (9) and (10) ensure rigs routes feasibility with respect to time
windows. The traveling time plus waiting time between event points k − 1 and
k is calculated in (8).

We also can modify constraint (1) for the case of the upper bounds on the
number visits m′i for each rig instead of all rigs:∑

k∈Ku

xuik ≤ m′i, i ∈ I, u ∈ Ui. (11)



The optimization criterion for the presented model is formulated in the fol-
lowing form: minimize

f =
∑
u∈U

∑
k∈Ku, k>1

tuk, (12)

tuk ≥
∑

i∈Iu∪{idu}

suijxu,i,k−1 − smax(1− xujk), (13)

u ∈ U, j ∈ Iu, k ∈ Ku, k > 1.

The traveling time between event points k−1 and k is calculated in (13), and the
objective function (12) summarizes the traveling times between all event points.

Using additional variables tsuk ≥ 0 and tfuk ≥ 0, we can rewrite constraints
(9) and (10) in the equivalent form

tfuk ≥ t
s
uk +

∑
i∈Iu

duiyuik, u ∈ U, k ∈ Ku, (14)

tsuk ≥ t
f
u,k−1 + tuk − bmax(1−

∑
i∈Iu

xuik), u ∈ U, k ∈ Ku, k > 1, (15)

tfuk ≤
∑
i∈Iu

bixuik, u ∈ U, k ∈ Ku, (16)

tsuk ≥
∑
i∈Iu

aixuik, u ∈ U, k ∈ Ku. (17)

Our preliminary computational experiment shows that model (1)-(7), (12)-
(17) is more appropriate for commercial solvers (CPLEX, GUROBI)

than model (1)-(10), (12)-(13). The model contains
∑
u∈U

( ∑
i∈Iu

mi

)
· |Iu| Boolean

variables as well as integer variables.

3 Stochastic Model

In this section we consider a stochastic version of the problem, and construct
mixed integer linear programming model similar to model (1)-(7), (12)-(17).

Suppose that drilling times dui of wells on sites are discrete random variables
with values duih and probabilities pih, h = 1, . . . , vi,

∑vi
h=1 pih = 1. Here we as-

sume that these probabilities do not depend on u, in other words each outcome
h defines the whole vector (du1,ih, ..., du|U|,ih). Considering all possible combina-
tions of drilling times at sites, we form the total set of possible scenarios SC
with cardinality v =

∏
i∈I vi. Let du,i,sc denote the drilling time of a well of site

i by rig u in accordance with scenario sc, and psc be the probability of scenario
sc. Now our goal will be to define the rig routes and assign the number of wells
drilling to each rig in each visit to a site, minimizing the traveling distance, s.t.



the probability of satisfying all time windows constraints is not less than a given
threshold level α.

Given some values of all Boolean variables x = (xuik) and integer variables
y = (yuik) from MIP problem (1)–(7), (12)-(17) and given a specific realization sc
of the random scenario, one can define a function Q(x,y, sc) to be 0 if the
system of constraints (14)–(17) is consistent for the fixed x,y, sc, and define
Q(x,y, sc) = 1 otherwise. Using this function, the problem from Section 2 for
a single fixed scenario sc may be defined as an optimization problem w.r.t. two
vectors of variables x, y and a vector t = (tuk), asking to minimize the objective
function (12), subject to the set of constraints (1)–(7), (13), and Q(x,y, sc) ≤ 0.

Let us denote the system of constraints (1)–(7), (13) on variables x, y, t by
(x,y, t)R ≤ r, where matrix R and a row-vector r are defined appropriately on
the basis of the input data. Then the stochastic optimization problem mentioned
above may be formulated as

min
x,y,t

∑
u∈U

∑
k∈Ku, k>1

tuk,

(x,y, t)R ≤ r,

Pr{Q(x,y, sc) ≤ 0} ≥ α.
Let w = (w1, . . . , w|SC|) be a vector of scenario indicators. Application of

Theorem 1 from [6] shows that the stochastic optimization problem is equivalent
to the following deterministic MIP problem.

min
x,y,t,w

∑
u∈U

∑
k∈Ku, k>1

tuk,

(x,y, t)R ≤ r,

Q(x,y, sc) ≤ 1− wsc, sc ∈ SC,∑
sc∈SC

wscpsc ≥ α.

Here the confidence set of level α is formed by the Boolean variables wsc such
that wsc = 1 if scenario sc belongs to the confidence set, and wsc = 0 otherwise.

An equivalent of the constraint Q(x,y, sc) ≤ 1−wsc with variables for start-
ing times and completion times may be written as follows.

tfu,k,sc ≥ t
s
u,k,sc +

∑
i∈Iu

du,i,scyuik, u ∈ U, k ∈ Ku, sc ∈ SC, (18)

tsu,k,sc ≥ t
f
u,k−1,sc + tuk − bmax(1−

∑
i∈Iu

xuik), (19)

u ∈ U, k ∈ Ku, k > 1, sc ∈ SC,

tfu,k,sc ≤
∑
i∈Iu

bixuik + bmax(1− wsc), u ∈ U, k ∈ Ku, sc ∈ SC, (20)

tsu,k,sc ≥
∑
i∈Iu

aixuik − bmax(1− wsc), u ∈ U, k ∈ Ku, sc ∈ SC, (21)



3.1 Illustrative Example

Consider an instance with two rigs and one site including two wells. The site has
a time window (0, 4], and the drilling time may be 2 or 3 with some probability.
The traveling time from rig deports to the site is 1. It is easy to see that if wells
are drilled for 2 time units then only one rig visits the site and the objective is 1,
but if the wells are drilled for 3 time units then both rigs visit the site and the
objective is 2.

4 MIP Model Based on VRP Approach

The proposed VRP-based model is similar to the model from [7], but allows to
visit a site by the same rig several times.

For each site i ∈ I we create mi copies and introduce a new set of sites I ′. All
copies of the same original site have identical set of wells. Denote by I ′i all copies
of the original site i, I ′ = ∪i∈II ′i. Traveling times between site copies from I ′i are
equal to zero, traveling times between copies of different sites are equal to the
traveling times between these sites. Introduce a dummy site fs corresponding to
starting and completion point of the rout of each rig, set I ′f := I ′ ∪ {fs}. Put
traveling times su,fs,i′ := su,idu,i and su,i′,fs := 0 for i′ ∈ I ′i, i ∈ I. All rigs are
suitable for the dummy site fs, i.e. Ufs = U . Set I ′u := ∪i∈IuI ′i ∪ {fs} for all
u ∈ U and Ui′ = Ui for all i′ ∈ I ′i, i ∈ I.

Introduce Boolean variables xui′j′ such that xui′j′ = 1 if rig u visits site-
copy i′ and travels to site-copy j′, and xui′j′ = 0 otherwise. Let Real variables
tsui′ defines the starting time of works for vehicle u on site-copy i′, and integer
variables yui′ counts the number of wells of site-copy i′ drilled by vehicle u. We
formulate the following mixed integer linear programming model: minimize

f =
∑
u∈U

∑
i′∈I′

f

∑
j′∈I′

f

sui′j′xui′j′ , (22)

∑
j′∈I′

f

xui′j′ =
∑
j′∈I′

f

xuj′i′ , u ∈ U, i′ ∈ I ′u \ {fs}, (23)

∑
u∈Uj′

∑
i′∈I′

u

xui′j′ ≤ 1, j′ ∈ I ′, (24)

∑
i′∈I′

i

∑
u∈Ui

yui′ = ni, i ∈ I, (25)

yui′ ≥
∑
j′∈I′

u

xuj′i′ , i
′ ∈ I ′, u ∈ Ui′ , (26)

yui′ ≤ ni
∑
j′∈I′

u

xuj′i′ , i
′ ∈ I ′, u ∈ Ui′ , (27)

tsui′ + yui′dui + su,i′,j′ ≤ tsu,j′ + bmax(1− xui′j′), (28)



i′ 6= j′ ∈ I ′, i : i′ ∈ I ′i, u ∈ Ui′ ∩ Uj′ ,

su,fs,j′ ≤ tsuj′ + bmax(1− xu,fs,j′), j′ ∈ I ′, u ∈ Uj′ , (29)

tsui′ ≥
∑
j′∈I′

u

aixuj′i′ , i ∈ I, i′ ∈ I ′i, u ∈ Ui, (30)

tsui′ + yui′dui ≤
∑
j′∈I′

u

bixuj′i′ , i ∈ I, i′ ∈ I ′i, u ∈ Ui, (31)

∑
i′∈I′

u

xu,fs,i′ = 1, u ∈ U, (32)

∑
i′∈I′

u

xu,i′,fs = 1, u ∈ U. (33)

Constraints (23) guarantee that each site-copy has exactly one predecessor
and one successor in the route. Inequalities (24) indicate that each rig visits each
site-copy at most ones. Conditions (25)–(27) ensure that the required number
of wells are drilled at each site, and each well is drilled by one rig. Constraints
(28)–(29) set the starting times of the works on sites for rigs. Inequalities (30)–
(31) ensure feasibility of rig routes with respect to time windows. Conditions
(32)–(33) indicate that each rig starts and completes its rout in depot.

The model contains
∑
u∈U

( ∑
i∈Iu

mi

)2

Boolean variables and
∑
u∈U

∑
i∈Iu

mi inte-

ger variables.

4.1 Stochastic Version

In the stochastic version, as in Section 3, we introduce binary variables wsc

equipped with the constraint (??), add the scenario index to variables tsu,i and
replace constraints (28)-(31) by the following scenarios-based conditions:

tsu,i′,sc + yui′du,i,sc + sui′j′ ≤ tsu,j′,sc + bmax(2− xui′j′ − wsc), (34)

i′ 6= j′ ∈ I ′, i : i′ ∈ I ′i, u ∈ Ui′ ∩ Uj′ , sc ∈ SC,

su,fs,j′ ≤ tsuj′sc + bmax(2− xu,fs,j′ − wsc), j
′ ∈ I ′, u ∈ Uj′ , sc ∈ SC, (35)

tsu,i′,sc ≥
∑
j′∈I′

u

aixuj′i′ − bmax(1− wsc), i ∈ I, i′ ∈ I ′i, u ∈ Ui, sc ∈ SC, (36)

tsu,i′,sc + yui′du,i,sc ≤
∑
j′∈I′

u

bixuj′i′ + bmax(1− wsc), (37)

i ∈ I, i′ ∈ I ′i, u ∈ Ui, sc ∈ SC.



5 Greedy Algorithm for Stochastic Optimization

The number of binary variables wsc grows exponentially in the number of sites
with uncertain drilling time. Therefore, a straightforward application of a MIP
solver allows to solve only small-sized instances. In order to treat larger instances,
we propose a simple randomized greedy heuristic.

Recall that each scenario sc is some realization of random drilling times and
it is represented as an |I|-dimensional vector (sc1, . . . , sc|I|). Let us say that
scenario sc dominates scenario sc′ iff sci ≥ sc′i for all i. Clearly, in this case
if there is a solution to the considered stochastic problem with wsc = 1 one
may always set wsc′ = 1 in this solution without violation of its feasibility or
worsening the objective function value. For any subset of scenarios S ⊂ SC
define D(S) ⊂ SC as the set of all scenarios that are dominated by at least
one element of S (note that each scenario dominates itself, so S ⊆ D(S)). For
a subset S consider a stochastic optimization problem in which the constraint∑

sc psc · wsc ≥ α is excluded, all variables wsc, sc ∈ S are fixed to one, and all
other wsc are fixed to zero. Denote this problem as P (S).

With these notations, we may reformulate our stochastic problem as follows:
Find a subset of scenarios S such that the total probability of D(S) is not
less than α and an optimal value of the objective function of problem P (S) is
minimal. The proposed greedy algorithm is aimed at finding such a subset S and
its outline is given below.

Algorithm 1 Randomized Greedy Algorithm

1: Set S := ∅, p := 0.
2: Repeat until p ≥ α or the running time exceeds the given limit.

2.1 Choose scenarios sc1, ..., scr ∈ SC uniformly at random.
2.2 Solve r stochastic optimization problems P (S ∪ {sc1}), ...P (S ∪ {scr}) and let

f1, ..., fr be the objective function values for the obtained solutions.
2.3 Choose scj with the minimal value f j , add it to S, and remove all dominated

scenarios: S := S ∪ {scj}, SC := SC \D({scj}).
2.4 Update the current value of p as the total probability of D(S).

The solution of stochastic optimization problems at Step 2.2 can be done in
parallel. Due to the random nature of the algorithm, it is reasonable to run it
several times and choose the best result. One positive feature of the algorithm
is that it produces a sequence of solutions with increasing probability values p
and the corresponding values of f , which gives a better understanding of the
problem structure to a decision maker (this will be illustrated in Section 6.3).



6 Implementation and the Computer Experiments

In the experiments, we used a server with two AMD EPYC 7502 processors (each
one has 32 cores, hyper-threading mode on), OS Ubuntu 20.04. MILP solver
Gurobi (version 9.0.3) was applied to solve MIP problems1 coded in GAMS.

6.1 Testing Deterministic Models

First, we tested the event-point-based and the VRP-based models on instances
with 50 sites from [8], where the results of Gurobi were presented for the VRP-
based model version with no returns. Two versions of the models are investigated,
when two and when three visits of sites are allowed for rigs. Computational
experiment with the same parameters as in [8] did not improve the objective
values. We believe that this is due to the structure of the instances from [8],
where time windows for objects are uniformly distributed during the planing
horizon and have lengths less than or equal to the total drilling time of wells
on the objects. The event-point-based model demonstrated slightly worse results
than VRP-based model.

Second, we compared the two deterministic models on a family D of problems
Dk, k ∈ N , constructed on the basis of the example from Subsection 2.1. Problem
Dk consists of k subproblems with the structure as shown in Fig. 1 and the same
initial data. It has 6k sites and 3k drilling rigs. Each subproblem has the set of
sites Gv = {6v − 5, 6v − 4, ..., 6v}, the set of rigs Uv = {3v − 2, 3v − 1, 3v} and
the point of the initial location of rigs idv for v = 1, .., k. Rigs of Uv can serve
all sites from Gv, as well as the first site from the set with the next index (i.e.
Gv+1). In the distance matrices, we put su,i,6v+1 = su,6v+1,i = i + 10 for v =
1, ..., k− 1, i ∈ Gv, u ∈ Uv. For all v and i ∈ Gv, u ∈ Uv, put su,idv,i = 5. Direct
transportation is prohibited between all other pairs of sites. For the forbidden
movements of drilling rigs, we will assign sufficiently large values as distances.
In the experiment, we set this value to 265.

For the VRP-based model, the Gurobi solver was used with the parame-
ters Presolve = 2, GomoryPasses = 0, Method = 0, MinRelNodes = 10627,
ImproveStartTime = 8640. For MIP model based on event points we did not
find any parameters settings better than the default ones, so the default settings
were used. The results for k = 1, 2, .., 6 are shown in Table 1. In the case of
one visit, these instances required little solving time in both models, although
the VRP-based model required less time for most instances. In the case of two
visits, as k grows, the problems become more difficult for both models. For all
instances, solutions with the optimal value of the objective function were found,
but using the VRP-based model, the solver failed to prove the obtained solutions
optimality in 10 hours of CPU time for k ≥ 4. The EP-based model yields the
best results for this series.
1 The choice of this solver was based on a preliminary experiment, which indicated

that on the MIP instances considered here Gurobi has an advantage to other
solvers available to us (e.g. it was approximately twice as fast in comparison with
CPLEX 12.10.0.0).



Table 1. Comparison of models on series D.

at most 1 visit at most 2 visits
k |I| |U | Obj Time Obj Time

EP-based VRP-based EP-based VRP-based

1 6 3 24 0,89 0,21 21 2,50 1,82

2 12 6 48 7,14 1,55 42 149,36 114,93

3 18 9 72 77,94 7,41 63 576,40 10502,38

4 24 12 96 328,89 11,71 84 703,38 > 36000

5 30 15 120 97,46 7,95 105 5888,08 > 36000

6 36 18 144 40,11 88,36 126 10695,31 > 36000

6.2 Testing Stochastic Models

The experiments were done on subinstances of the instances from [8]. In two
series S1 and S1′ (10 instances in each series) we take the first seven or the first
ten sites, and all given six rigs. Sites have from 5 to 30 wells. Note that instances
from S1′ are characterized by shorter time windows than instances from S1.

For five random sites of each instance we suppose that drilling time can take
two values 2 or 3, and the probability of value 2 is generated randomly from the
interval [0.75, 0.85]. Drilling times are equal to 2 for the rest of the sites. For the
sake of simplicity, we assume that du,i,sc do not depend on u, i.e. they are the
same for any fixed pair i and sc.

We test event-point-based and VRP-based models for threshold levels α =
0.5; 0.6; 0.7; 0.8; 0.9; 0.99 in two versions, when one and when two visits of sites
are allowed for rigs. The results for two instances with seven sites of series
S1 are presented in Table 2 (the full results for all instances are available at
https://gitlab.com/YuliaKovalenko-gl/stochastic-vrp-problem.git) The running
time of Gurobi is greater on series S1′ than on series S1 due to the structure of
the instances in this series.

In most of the instances the optimal stochastic solution at level α = 0.8 has a
lower traveling distance, compared to the worst-case scenario, where all drilling
times are equal to 3. In the instances presented in Table 2, the version allowing up
to two visits yields a solution with a lower objective traveling distance, compared
to the version with no returns. As we can see the running time of Gurobi has no
specific tendency as a function of threshold α. In the two-visit-version, none of
the considered models clearly dominates the other one in terms of running time
of Gurobi. The VRP-based model demonstrates better results in a majority of
the cases with no returns.

6.3 Evaluation of the greedy algorithm

For testing the greedy algorithms, two instances from previous section, namely
7 2 and 7 3, were taken and four larger problems were generated on the basis of
the instances S1.1, S1.2, S1.3, S1.4 from [8]. The original instances contain 50



Table 2. Comparison of models on series with 7 sites.

at most 1 visit at most 2 visits
Obj Time Obj Time

α EP-based VRP-based EP-based VRP-based

Instance 7 2

0.5 10 34,86 0,63 9 22,09 3,12

0,6 10 24,54 6,70 10 64,34 41,14

0,7 10 29,38 6,07 10 60,62 29,09

0,8 11 74,47 9,65 10 62,67 63,48

0,9 13 410,16 30,88 11 211,69 727,08

0,99 13 133,62 23,92 13 315,74 381,81

Instance 7 3

0,5 16 20,65 4,35 16 29,59 51,6

0,6 16 4,33 3,07 16 13,42 27,08

0,7 17 8,64 4,64 17 22,56 113,11

0,8 19 62,14 9,95 18 24,28 143,03

0,9 21 21,88 17,35 20 56,21 159,91

0,99 22 13,47 4,06 21 7,03 51,46

sites and 6 rigs. Here only the first 12 sites are extracted. All the travel times are
kept unchanged, but the drilling times du,i now take value 1 with probability 0.8
and value 3 with probability 0.2 for each site. The total number of scenarios is
then 212 = 4096. The MIP model for the first instance has 547980 columns, 7216
discrete-columns, and 3858896 rows. The straightforward application of Gurobi
with α = 0.7 could not find a feasible solution in five hours.

In the implementation of the greedy algorithm, at Step 2.1, the number of
considered scenarios is r = 3, and in case of large instances they are chosen at
random among the scenarios, in which du,i,sc have value 3 for more than five
sites, otherwise the probability of D({sc}) is negligibly small. At Step 2.2, three
problems are solved in parallel by Gurobi, each process is allowed to use up to
four CPU cores, and the solving time of one problem is limited by 180 seconds.
The algorithm stops when it reaches the level α = 0.95, or when the running
time exceeds the overall time limit, which was set to one hour. Although the
algorithm may work with both EP and VRP based models, the VRP case was
chosen, because it showed better performance in earlier tests with no returns.

For each problem instance, five independent runs of the greedy algorithm
were made and the best results were collected and summarized in Table 3. As
before, the smaller problems were solved in two variants: with at most one or
at most two visits of each site (this is marked with “1v” or “2v” in the table).
Column “optimistic” shows the objective function values of the solution with
the best realization of the drilling times, i.e. the scenario sc with all du,i,sc = 1;
similarly, column “pessimistic” corresponds to the worst-case scenario with all
du,i,sc = 3. The other columns show the best results provided by the algorithm
after reaching the given probability threshold. The cells, for which no feasible



solutions were obtained are marked with “–”. For example, let us fix α = 0.8,
then for instance S2.1 there exists a solution with the cost f = 35 that is valid
with probability at least α. For the smaller problems, the obtained solutions
are quite close to the optimal ones (results known to be optimal are marked by
“*”, compare to Table 2). For problems S2.1...S2.4, which can not be straight-
forwardly solved by the MIP solver in practically acceptable time, the greedy
algorithm still yields reasonable solutions.

Table 3. Results of the greedy algorithm

Instance optimistic p=0.6 p=0.7 p=0.8 p=0.9 p=0.95 pessimistic

7 2(1v) 10 10* 10* 11* 13* 13* 13
7 2(2v) 9 10* 10* 11 11* 13 13
7 3(1v) 16 16* 18 19* 21* 22 22
7 3(2v) 15 16* 18 19 20* 21 21

S2 1(1v) 13 29 33 35 44 – –
S2 2(1v) 10 21 22 29 31 31 31
S2 3(1v) 16 39 39 42 43 45 45
S2 4(1v) 12 35 40 42 – – –

7 Conclusions

In this paper, we have studied a generalization of the drilling rig routing problem
suggested by I. Kulachenko and P. Kononova, allowing to re-visit the same site by
the same rig and assuming that at some sites the drilling durations are random
variables with known discrete distributions. We have compared two different
approaches to defining a MIP formulation of the problem, a one based on the
classical VRP model with time windows and a one based on the event points
approach. Also, we have carried out a computational experiment, comparing
the performance of Gurobi solver on these MIP models and found out that in
different cases either one of the models has an advantage. To solve approximately
the stochastic optimization problems of higher dimension, we have developed a
randomized greedy heuristic, which demonstrated promising results.
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