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Abstract. We consider a bi-objective optimization problem of choosing
the buffers capacity in a production system of parallel tandem lines,
each consisting of two machines with a single intermediate buffer. During
operation of the system, the equipment stops occur due to failures and
these stops are random in the moments when they arise and in their
durations. The product is accumulated in an intermediate buffer if the
downstream machine is less productive than the upstream machine.
We study the complexity of exact and approximate computations of a
Pareto front for the following two bi-objective problem formulations:
(i) the expected revenue maximization with minimization of buffers allo-
cation cost and (ii) the expected revenue maximization with minimiza-
tion of expected inventory costs. The expected revenue is assumed to be
an increasing function of the expected throughput of the system.
On the one hand, fully polynomial-time approximation schemes for ap-
proximation of Pareto fronts of these problems are proposed and an exact
pseudo-polynomial time algorithm is suggested for the first problem in
the case of integer buffer capacity costs. On the other hand, we show
that both of these problems are intractable even in the case of just one
tandem two-machine line.

Keywords: inventory system, throughput, capital costs, storage costs,
intractability

1 Introduction

Finding the set of Pareto-optimal solutions or a close approximation to it are of
great importance in design of automated control and decision support systems.
The problem of buffer volume optimization of the volume of buffers arises in
management of such manufacturing systems as automatic lines, flexible produc-
tion systems and automated assembly lines, where parts are moved from one
machine to another using some transport mechanism.

Due to equipment failures, in the process of operation of the line the machine
breakdowns occur in random moments and have a random duration. The conse-
quences of failures spread on related operations due to the impossibility to pass



an item onto the following operation, or lack of parts coming from the upstream
machine. Presence of buffers for storage of parts between the machines allows
to reduce the impact of failures on neighboring operations, and to increase the
line throughput, i.e. the production rate of the line in the stationary regime.
However, installation of buffers is associated with additional capital expendi-
tures and increases the inventory of parts. The problem consists in choosing the
volume of buffers based on the throughput of the line, the capital cost of the
installation of buffers and the inventory cost.

Significance of solving such problems of optimization of production lines is
shown in [28]. Economic effect of implementation of solution methods for such
problems in the car production is shown in [26] on the example of PSA Peugeot
Citroën.

Analysis of production lines subject to failures is usually conducted using
Markov models with discrete or continuous time under the assumption of geo-
metric or exponential distributions of time to fail and time to repair (see [10]).
The duration of processing a part can be assumed deterministic or random
(typically with geometric, Erlang or the exponential probability distribution).
In the case of continuous time and deterministic durations of parts process-
ing, some non-Markov transitions may be approximated by Markov transitions
under the assumption of exponential distribution of the corresponding random
variables [16, 23, 17]. At quite natural assumptions thus obtained Markov models
have a stationary distribution (see [24], Chapter 2) and the throughput as well
as the expected number of parts in each buffer are determined in the stationary
regime.

Most of the works in the literature on optimization of buffer volumes are
dealing with a single-criterion problem formulations (see [2, 18, 20]). Other stud-
ies consider more than one criterion, but using a weighted sum of criteria [1,
12]. In [5], the ant colony algorithm and the evolutionary algorithm of [30] are
adapted for multi-criteria buffer allocation problem. Here the optimization crite-
ria are maximization of the throughput of the line, calculated with a simulation
algorithm, and minimization of the overall buffers volume. The well-known vari-
ant of multi-objective genetic algorithm [11] is adapted in [9] to the bi-criteria
buffers allocation problem, where the criteria are the throughput and the capital
cost of buffers installation.

In the present paper, we consider three criteria: maximization of average
production rate in the steady regime, minimization of capital costs for the in-
stallation of buffers and minimization of the average inventory cost for storage
of parts in the intermediate buffers.

Exact methods of calculation of the average production rate are known for
two-machine tandem lines and, in some special cases, for the three three-machine
tandem lines (see e.g., the review [10]). For the general case, one can only apply
the approximate decomposition methods,approximate aggregation or simulation
methods [10, 16].

In the present paper, we will not assume a specific type of distribution of
time to fail and time to repair or processing time of machines. Neither shall we



choose a specific method of computing the expected throughput and inventory
of a line. Instead of that, we will make two simple monotonicity assumptions
which hold in many different versions of the buffers allocation problem (see the
details below in Section 2).

Suppose that on the set of feasible solutions D, the vector function of criteria
f = (f1, f2) is specified with points f(x) = (f1(x), f2(x)) ∈ R2, x ∈ D in the
criteria values space. In our case, f1 is a maximization criterion and f2 is a
minimization criterion. Let us define the Pareto dominance in the space R2:
vector f = f(x), x ∈ D is Pareto-dominated by vector f̄ = f(x̄), x̄ ∈ D, if the
inequalities f1(x) ≥ f1(x̄), f2(x) ≤ f2(x̄) hold and there is at least one strict
inequality among them. A solution x ∈ D is dominated by a solution x̄ ∈ D, if
the vector f(x) is dominated by vector f(x̄) in the sense of Pareto. The set D̃ of
all non-dominated feasible solutions is called the set of Pareto-optimal solutions.
The total set of alternatives is a subset D0 ⊆ D̃ of a minimum size, such that
f(D0) = f(D̃) [27]. The Pareto Front is the set F := f(D̃). Given ε > 0,
the Pareto set ε-approximation D̃ε is a set such that for any Pareto optimal
solution x̃ ∈ D̃, there is a solution x ∈ D̃ε satisfying f1(x) ≥ (1 − ε)f1(x̃) and
f2(x) ≤ (1 + ε)f2(x̃).

In what follows, m denotes the number of machines in a production line, N
is the number of intermediate buffers, subject to optimization.

By system with a simple structure, we mean a system which consists of N par-
allel two-machine tandem lines with common input buffer and common output
buffer. An example of a system with simple structure is provided in Figure 1.

Fig. 1. Example of a series-parallel line with simple structure (N two-machine tandem
lines in parallel)

In what follows, we consider the complexity of two bi-objective optimization
problems that ask to determine the buffers capacity in a production system with
simple structure. The optimization criteria we consider are the same as in [13]:
the expected revenue due to line operation, the capital costs for installing buffers,
and the expected total inventory cost for intermediate products. The expected
revenue is supposed to be an increasing function of the expected throughput of
the system.



On the positive side, we propose two fully polynomial-time approximation
schemes (FPTASes) for approximation of Pareto front in the following two bi-
objective problem formulations: (i) the expected revenue maximization with
minimization of capital costs and (ii) the expected revenue maximization with
minimization of the expected inventory costs. An exact pseudo-polynomial time
algorithm is proposed for computing the Pareto front in the first problem, if the
buffers allocation cost is a linear function of buffer sizes with integer coefficients,
i.e. assuming integer buffer capacity costs.

On the negative side, we show that the canonical decision problems for the
above mentioned bi-objective problems are NP-hard even if the revenue is pro-
portional to the production rate and the buffers allocation cost is linear. In the
case of just one tandem two-machine line, both of the problems are complete mul-
tiobjective optimization problems in the sense of Emelichev and Perepelitsa [19]
and therefore intractable, i.e. their Pareto-front can be of exponential size in the
input size. We also show for both of these special cases that if the Pareto front
is computable in a polynomial time then P = NP holds.

The remainder of the paper is organized as follows. The assumptions of the
model of production line and the bi-objective problems formulation are presented
in the next section. Section 3 is devoted to the analysis of computational com-
plexity of bi-objective buffer allocation problems on the two-machine tandem
lines. This is followed by the analysis of computational complexity and approx-
imability of bi-objective buffer allocation problems for lines of simple structure
in Section 4. Finally some conclusions are drawn in Section 5.

2 Basic Properties and Definitions

2.1 An Illustrative Model of Production Line

Let us consider an illustrative example of a production systems under considera-
tion. Suppose that each machine of the system can be in an operational state or
under repair. An operational machine may be blocked and temporarily stopped
in case if there is no room in the downstream buffer. An operational machine
may be starved if there are no parts to process in the upstream buffer. Otherwise
operational machines are working.

A working machine is assumed to have a constant cycle time. It is supposed
that machines break down only when they are working. The times to fail and
times to repair for each machine are assumed to be mutually independent and
exponentially distributed random values. A detailed analysis of steady-state per-
formance of such systems and optimization of its parameters were carried out in
a number of works, see e.g. [3, 8, 12–17, 23].

2.2 Optimization Criteria and the Set of Feasible Solutions

Let the buffers in the system be denoted by B1, . . . , BN and let hj be the capacity
of buffer Bj , j = 1, ..., N , subject to optimization. Denote the vector of decision



variables by H = (h1, h2, . . . , hN ) ∈ ZN
+ , where Z+ is the set of non-negative

integers. Let D = {H = (h1, ..., hN ) ∈ ZN
+ | 0 ≤ hi ≤ di, i = 1, ..., N} be

the set of feasible solutions, where d1, . . . , dN are the maximal admissible buffer
capacities.

The most commonly used optimization criteria are:

– the throughput, i.e. expected number of parts produced by the system per
unit of time in the steady state mode (expected steady state production
rate) V (H);

– the expected steady state inventory Q(H) = (q1(H), . . . , qN (H)), where
qj(H) ∈ [0, hj ] is the expected steady state number of parts in buffer Bj ,
j = 1, . . . , N .

Let us introduce the following additional notation, using the symbol Q for the
set of rational numbers:

– R(V ) is the revenue related to the production rate V , i.e. R : Q+ → Q+;
– B(H) is the cost of buffer configuration H, i.e. B : D → Q+;
– C(Q) is the cost of expected steady state inventory vector Q, i.e.

C : QN
+ → Q+.

In what follows, R(V ) is assumed to be a given non-decreasing function. In
the case of lines with simple structure, V (H), B(H) and C(Q) are assumed
to be given completely additively separable functions, non-decreasing in each
argument. Recall that f(x1, . . . , xn) is called completely additively separable if
f(x) = f(x1)+ . . .+ fn(xn) for some functions f1, . . . , fn, each a function of one
variable. We also make two technical assumptions: (i) functions V (H), B(H),
C(Q) Q(H) and R(V ) are computable in polynomial time, and (ii) denoting any
of these functions by f(·), we have the value | log f(·)| polynomially bounded in
the length of the problem input.

The cost function B(H) may be non-linear to model some standard buffer
capacities. A stepwise revenue function can be used to model zero revenue in
case of an unacceptably low throughput.

2.3 Formulation of the Bi-Objective Problems

Let us use the following notation for the problems of finding a Pareto front:

– In (R,B)-Pareto, the criterion f1 is the expected revenue maximiza-
tion R(V (H)) and f2 is the minimization of buffer allocation cost B(H).

– In (R,C)-Pareto, the criterion f1 is the expected revenue maxi-
mization R(V (H)) and f2 is the minimization of expected inventory
cost C(Q(H)).

In accordance with [4, 25, 29], by Canonical Decision Problem for the buffers
allocation problem with criteria pairs f1(H) → max, f2(H) → min, we mean the
following decision problem: Given an instance I of buffer allocation problem and
a pair (α, β) ∈ R2

+, decide whether there exists a feasible buffers allocation H ′,
for which f1(H

′) ≥ α, f2(H
′) ≤ β.

Let us use the following notation for the canonical decision:



– In (V,linear B)-Dec, the criterion f1(H) ≡ V (H) and f2 is the minimization

of linear buffers allocation cost B(H) =
∑N

i=1 bihi.
– In (V,linear Q)-Dec the criterion f1(H) ≡ V (H) and f2 is the minimization

of linear inventory cost C(Q(H)) =
∑N

i=1 ciqi(H).

2.4 Monotonicity Properties

In what follows, we use the following two monotonicity assumptions for each
subsystem consisting of two machines, separated by a buffer Bi of size hi:

– M1. Monotonicity of expected throughput. V (H) is an increasing func-
tion of hi, i = 1, . . . , N .

– M2. Monotonicity of expected inventory. qi(H) is an increasing func-
tion of hi, i = 1, . . . , N .

In the case of illustrative model presented in Subsection 2.1, properties M1
and M2 follow from the analytical solution of the system of Kolmogorov equa-
tions describing the two-machine production system [8, 17].

3 Computational Complexity of Bi-Objective Buffer
Allocation Problems on Two-Machine Tandem Line

In the case of N = 1, we denote h := h1 = H and d := d1 for simplicity. Let
us consider two increasing functions V (h) and Q(h), defined for h = 0, 1, . . . , d,
and taking rational values.

Theorem 1. (i) If problem (R,B)-Pareto is polynomially solvable in case of
N = 1, then P = NP.
(ii) If problem (R,C)-Pareto is polynomially solvable in case of N = 1, then
P = NP.

The proof is similar to the proof of Proposition 1 in [13] and employs an idea
of Cheng and Kovalyov [7].

In [19], Emelichev and Perepelitsa give a definition of the complete multi-
objective problem. A multiobjective optimization problem with k objectives is
called complete if for any instance I of this problem with a set of feasible so-
lutions D, there exists a vector of criteria (f1, . . . , fk), such that D is the only
total set of alternatives w.r.t. (f1, . . . , fk), i.e. D

0 = D holds.
In view of the monotonicity assumptions for V (h) andQ(h), a straightforward

verification of the above definition indicates that (R,B)-Pareto and (R,Q)-
Pareto are both complete in the sense of Emelichev and Perepelitsa. Note that
d is a numerical parameter of the problem and |D| = d + 1. Together with
the completeness property, this implies that the cardinalities of Pareto fronts
of (R,B)-Pareto and (R,Q)-Pareto are not bounded by any polynomial in
problem input size and therefore these problems are intractable, according to the
terminology from [4, 21].



4 Computational Complexity of Bi-Objective Buffer
Allocation Problems on Lines of Simple Structure

Consider the bi-objective buffer allocation problem with criteria of expected
revenue R(V (H)) maximization and buffers installation cost B(H) minimization

on the set D, assuming that B(H) =
∑N

i=1 bihi where bi ∈ Z for all i = 1, . . . , N .

Proposition 1. In the case of lines of simple structure, the problem
(V,linear B)-Dec is NP-hard.

The proof of Proposition 1 is analogous to the proof [15] of NP-hardness of
the single-objective buffer allocation problem with the criterion of B(H) mini-
mization, given a lower bound on V (H).

Proposition 2. In the case of lines of simple structure, the problem
(V,linear Q)-Dec is NP-hard.

The proof of Proposition 2 is analogous to the proof [13] of NP-hardness of
the single-objective buffer allocation problem with the criterion of Q(H) mini-
mization, given a lower bound on V (H).

Proposition 3. In the case of lines of simple structure, the Pareto front of
buffer allocation problem with the criteria of expected revenue R(V (H)) maxi-
mization and buffers installation cost B(H) minimization is computable in pseu-
dopolymonial time, assuming integer bi, i = 1, . . . , N .

The proof of Proposition 3 is based on the dynamic programming method. It
is similar to the proof of pseudo-polynomial solvability of the Integer Knapsack
Problem.

Analogous claim for an arbitrary function B(H), increasing in each of its
arguments hi, is problematic. The reason is that the dynamic programming
method gives pseudopolymonial solvability only if the cardinality of the set of
values, taken by one of the optimization criteria, is polynomially bounded, given
polynomially bounded numerical input data. The same difficulty arises in com-
puting the Pareto set of the bi-objective buffer allocation problem with criteria
of the expected revenue R(V (H)) maximization and the expected inventory
cost C(Q(H)) minimization.

It is possible, however, to convert the FPTAS for Generalized Knapsack prob-
lem [22] into FPTASes for the bi-criteria optimization problems, where expected
revenue R(V (H)) maximization is combined with buffers installation cost B(H)
minimization or with the expected inventory cost C(Q(H)) minimization. Re-
call that a family of algorithms {Aε} is called a fully polynomial approximation
scheme (FPTAS) for a multiobjective optimization problem if for any input in-
stance and any ε > 0, the algorithm Aε runs in polynomial time w. r. t. the size
of the input and 1/ε, and outputs a Pareto set ε-approximation.

Theorem 2. In the case of lines of simple structure, there exist FPTASes for
(R,B)-Pareto and (R,C)-Pareto.

The proof is based on the general scheme suggested by Cheng et al. in [6] for
the construction of Pareto set ε-approximation of a bi-criteria problem.



5 Conclusions

We have established intractability of several special cases of buffer allocation
problem in bi-objective formulation using the proof ideas developed for the anal-
ysis of single-criteria formulations of the problem. Our results apply to different
particular models of production line, provided that two monotonicity conditions,
formulated here, are satisfied. On the positive side, we propose fully polynomial-
time approximation schemes for approximation of the Pareto front for two ver-
sions of buffers allocation problem and an exact pseudo-polynomial algorithm
based on the dynamic programming method.
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