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Abstract—It has been shown before that some results from
the theory of evolutionary algorithms (EAs) may be used for the
analysis of population dynamics in biology. In the present paper,
we study the EAs without elite individuals, where the fitness-
proportionate selection is used, on the class of Royal Road fitness
functions. The behavior of EAs with these fitness functions may
be considered as a model of population dynamics in the case
of fitness landscape with several neutrality regions. We obtain
lower and upper bounds on the expected time of evolving the
fittest possible genotype for the Royal Road fitness function. It
is expected the obtained results to be useful in development of
modeling tools for biological populations.

Index Terms—Optimization time, Royal Road function, Fitness
proportionate selection, Scaling

I. INTRODUCTION

It has been shown before that some results from the theory
of evolutionary algorithms (EAs) may be used for the analysis
of population dynamics in biology (see e.g. [1]). In this paper,
we study non-elitist EAs with fitness-proportionate selection
on the class of Royal Road fitness functions.

In the theory of EAs, the term runtime, or optimization time
stands for the number of individuals produced and evaluated,
until a genotype with the maximum fitness is found for the
first time. Here evaluation of an individual usually implies
computing the fitness of its genotype, which is equivalent to
finding the objective function value of a tentative solution to
the optimization problem being solved by the evolutionary
algorithm. Results of the EAs theory describe the role of
mutation and crossover operators, population size, or self-
adaptation methods etc., see e.g. [2]–[7]. From studies of
such kind, some improved evolutionary algorithms and their
operators may be developed [8], [9] and some biologically
meaningful results may be obtained [1], [10], [11].

In particular, in [1], [10] the theoretical bounds known
for the EAs with a variant of the truncation selection called
(µ, λ)−selection, were applied to model the genetic engi-
neering technique of Systematic Evolution of Ligands by
EXponential enrichment (SELEX). The upper bounds on the
expected EA runtime were used to upper-bound the expected
number of rounds of SELEX until a series of binding sites

for protein factors is found. It was shown [10] that for
some cases with large population size, theoretical bounds give
favorable prediction, while computational experiments require
prohibitive CPU resource (e.g. with populations of 1014 or
1015 individuals). In [11], it is demonstrated that an EA with
tournament selection, applied to a string matching problem,
may be used as a meaningful simulation model for some
SELEX procedures with populations up to 108 individuals.

A. Preliminaries

To describe the EA outline, let us consider a problem of
maximizing of a function f(x) over the set of all x ∈ An,
where A is a finite alphabet which is used for solutions
encoding. In the EA literature, the objective function f is
called a fitness function, and An is called the space of
genotypes. In what follows, we assume that A = {0, 1} for
the sake of simplicity. A population of λ individuals on the
EA iteration t is denoted by Pt.

Pt = (Pt(1), . . . , Pt(λ)) ∈ Anλ,

where Pt(k) is the k-th individual in Pt, k = 1, . . . , λ.
The scheme of the EA considered in this paper is as follows.

Algorithm 1
1. Construct a random initial population P0.
2. Put t := 0.
2. Until a stopping condition is met, repeat steps 2.1 and 2.2:

2.1. Put t := t+ 1.
2.2. For k := 1 to λ repeat steps 2.2.1 and 2.2.2:

2.2.1. Apply proportionate selection to
choose a genotype y in Pt.

2.2.2. Add a genotype mutate(y) to population Pt+1.
3. Output the the fittest genotype in P0, . . . , Pt+1.

We assume that the mutation operator mutate changes
each bit of x with a given mutation probability χ/n, where
the parameter χ is usually a constant. Roughly speaking, the
runtime of such an EA is λ times the number of iterations till
the optimal genotype is found for the first time.



In the evolutionary computation, one of the well-known
examples of the fitness function, generalizing the linear func-
tions, is the Royal Road function [12]. In what follows, we
use the most studied special case of these functions as in [13].
Here a string x is partitioned into n/r blocks of length r (in
what follows, we assume the parameter r to be a constant):

RRr(x) :=

n/r−1∑
i=0

ai

r∏
j=1

xir+j .

A number of well-known results in the theoretical biology are
based on the assumption of weak epistasis, which implies that
genes effect on the fitness of a genotype is approximately ad-
ditive [11], [14]. The Royal Road functions may be considered
as example of such functions, where each block corresponds
to a separate gene or domain, and there are a number of such
blocks in the genotype. A modification of the RR function
for the case of four-letter alphabet A may be found in [1]. In
the most basic model of additive effects, one can consider the
linear fitness functions, which may be considered as a special
of the Royal Road functions with r = 1.

In this paper, we can assume w. l. o. g. that the weights aj
are positive and ordered so that a1 ≥ a2 ≥ · · · ≥ an > 0.
The behavior of EAs on the fitness functions RRr(x) may
be considered as a simplified model of population dynamics
in the presence of neutrality regions in a biological fitness
landscape [15].

Let us introduce some other notations and definitions which
will be used in what follows.

If X is partitioned into m subsets, called levels
(A1, . . . , Am), let us denote A≥j := ∪mi=jAi. A partition is
called an f -based partition if for any x ∈ Aj , y ∈ Aj+1 we
have f(y) > f(x), j = 1, . . . ,m− 1. With a minor abuse of
the standard notation, to denote the number of individuals of
P in A ⊆ X we use |P ∩A| := |{k : P (k) ∈ A}|.

Formally, the selection operator is represented by a probabil-
ity distribution over 1, . . . , λ, and we use psel(i | P ) to denote
the probability of selecting the i-th individual P (i). In the
proportionate selection, the chance of selecting an individual
is equal to its fitness divided by the sum of fitness values in
the current population:

psel(i | P ) =
f(P (i))∑λ
j=1 f(P (j))

.

In this paper, w.l.o.g we assume that individuals of P are
sorted so that f(P (i)) ≥ f(P (i + 1)), i = 1, . . . , λ − 1.
The cumulative selection probability β for any γ ∈ (0, 1] is
defined [16] as

β(γ, P ) :=

λ∑
i=1

psel(i | P ) ·
[
f(P (i)) ≥ fdγλe

]
,

where P ∈ X λ, and [·] stands for the Iverson bracket. One
can interprete β(γ, P ) as the probability to select an individual
with fitness at least as high as in the dγλe-ranked individual
of P.

The mutation operator mutate is represented by a transi-
tion matrix pmut with |X |2 elements, where pmut(y | x) is the
probability to mutate an individual x into y.

The following Level-Based Theorem is a re-formulation
of Corollary 7 [17], adjusted to the f -based partition and
Algorithm 1, and improving Theorem 8 of [18].

Theorem 1. Assuming an f -based partition (A1, . . . , Am)
of X , and T := min{tλ | |Pt ∩ Am| > 0}, if there exist
parameters s1, . . . , sm−1, p0, δ ∈ (0, 1], γ0 ∈ (0, 1) such that
(M1) for all P ∈ X λ for all j = 1, . . . ,m− 1 holds

pmut (y ∈ A≥j+1 | x ∈ Aj) ≥ sj ,
(M2) for all P ∈ X λ, for all j ∈ [m− 1] holds

pmut (y ∈ A≥j | x ∈ Aj) ≥ p0,
(M3) for all P ∈ (X \Am)

λ
, for all γ ∈ (0, γ0] holds

β(γ, P ) ≥ (1 + δ)γ/p0,
(M4) population size λ satisfies

λ ≥ 4

γ0δ2
ln

(
128m

γ0s∗δ2

)
, where s∗ := min

j=1,...,m−1
{sj},

then E [T ] <
(

8
δ2

)∑m−1
j=1

(
λ ln

(
6δλ

4+γ0sjδλ

)
+ 1

γ0sj

)
.

B. Some Previous Results

The fitness-proportionate selection, which is also called a
roulette-wheel selection, was most frequently used in the first
genetic algorithms [19]. Unlike the rank-based selections [16]
(tournament selection, (µ, λ)-selection, ranking selection etc.),
the probability distribution of this operator explicitly depends
on the absolute values of the individuals fitness. Thus, a
composition of fitness with some non-linear function may
significantly change this distribution.

The field of evolutionary computation emerged due to trans-
fer of ideas from the evolutionary biology into the computer
science. Currently, a reverse transfer of some methods from
the evolutionary computation can be observed (see e.g. [20]).
Studies of the proportionate selection may also contribute
to this reverse transfer, since several well-known models of
population dynamics in the population genetics also express
the fitness-proportionate effect of selection on the genotypes
frequencies [21]. (Note that in the population genetics, the fit-
ness is typically defined as the expected number of offspring of
an individual or the underlying genotype, which corresponds
to the term “reproductive rate” in the case of EAs.)

The assumption that the genes effects on the fitness are
approximately additive is used in many models in the theo-
retical biology, however sometimes it is more appropriate to
assume that genes have multiplicative effects [14]. Counter-
parts of biological models with multiplicative effects can be
found in the EAs, based on the proportionate selection with
fitness scaling [16], [22]. On the most basic linear function
ONEMAX(x) :=

∑n
i=1 xi, Lehre [16] showed that the EA

with a sufficiently large population requires an expected ex-
ponential time to find a bit-string with more than 99.7% of
1-bits. On the other hand, Neumann et al. [22] proved that a
scaling of the original fitness function, which is equivalent to
changing it into (λ− 1)ONEMAX(x) with λ > c log n, for some
constant c > 0 guarantees expected optimization time O(λn).
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C. Our Contribution

The results presented here are based on the methods sug-
gested in the preprint [23]. The contribution is twofold. On
one hand, in the next section it is shown that even the linear
functions require an exponentially growing in n amount of
time to find the optimum, if the non-elitist EA uses the fitness-
proportionate selection, the bitwise mutation with a mutation
probability χ/n, and a population of size at least nk, where
χ > ln 2 and k > 2 are constants. On the other hand, by
application of the Level-Based Theorem [17] in Section III we
show that in the case of constant block length r and integer
polynomially-bounded weights ai, the EA has a polynomially
bounded runtime, given the appropriate parameter χ, inversely
proportional to n and a sufficiently large but polynomially
bounded λ. We also show in Section IV that polynomial
expected runtime can be achieved using a constant χ if the
fitness is exponentially scaled.

II. INEFFICIENCY OF STANDARD MUTATION PROBABILITY

In this section, we consider Algorithm 1 with a constant
value of the parameter χ > ln 2. To show that this algorithm
is inefficient on linear fitness functions, we use the method
proposed in [16] for the special case of the ONEMAX function.

Theorem 2. If f(x) ≡
∑n
i=1 aixi on X , then Algorithm 1

with population size λ ≥ n2+δ, and a mutation probability
χ/n for any constants δ > 0, χ > ln(2), obtains the optimum
of f with probability at most λe−c

′nδ within ecn generations,
where c, c′ are some positive constants.

The only difference of this formulation form that of Theo-
rem 4 [23] is that here we do not require λ to be polynomially
bounded. Theorem 2 is proved by means of the Negative Drift
Theorem for Populations from [24]. The proof is analogous to
that of Theorem 4 [23].

III. EFFICIENCY OF LOW MUTATION PROBABILITIES

Authors of early computational experiments with the genetic
algorithms (e.g. see [19]) recommended that the mutation
probability should be chosen inversely proportional to the
population size. Later, theoretical runtime analysis of simple
EAs on the benchmark functions like ONEMAX indicated
that the mutation probability should be inversely proportional
to the problem dimension (see e.g. [25]). However, as the
previous section shows, a constant value of χ should not be
recommended in the case of fitness-proportionate selection on
linear functions. A similar conclusion was obtained from the
analysis of genetic algorithms [26]–[28] in the special case
of ONEMAX. Later, in [18] it was discovered that reducing
the mutation probability to 1/(6n2) one gets a polynomial
expected runtime on ONEMAX. Now we generalize the result
from [18] to the Royal Road functions. In this section, we
assume that weights aj to be integer numbers.

Theorem 3. If f(x) ≡ RR(x) on X , then Algorithm 1,
using mutation probability χ/n with χ = (1 − c)/(namax),
amax := maxni=1 ai, for any positive constant c < 1, and the

size of population λ ≥ Cn2a2maxr ln(namax) for a sufficiently
large constant C > 0, has the expected runtime no more than

27n3a2max

c2

(
λ lnλ+

4en2rarmax

c(1− c)r

)
. (1)

Proof. Let us denote N := n/r. We assume w. l. o. g. that
a1 ≥ a2 ≥ · · · ≥ aN > 0 in order to apply Theorem 1,
partitioning the search space into the following levels:

Aj :=

{
x |

j∑
i=1

ai ≤ RR(x) <

j+1∑
i=1

ai

}
, j = 0, . . . , N − 1,

AN := {x | RR(x) = f∗},

where f∗ =
∑N
`=1 a`. In total we have m = N + 1 levels.

Let us say for any x ∈ X that a block ` is solved in x if
xi(`) = · · · = xi(`)+r = 1, i(`) := (`− 1)r + 1.

By the definition of our partition, if x ∈ Aj then for any j <
N , there is at least one block ` among the blocks 1, . . . , j+1
that is not solved. So it is sufficient to solve block ` and keep
the rest of the bits unchanged in order to get an individual at
a level above j. This happens with a probability not less than
(1− χ/n)n−r(χ/n)r, which may be lower-bounded by(

1− 1

n

)n−1(
1− c
a1n2

)r
≥ (1− c)r

ear1n
2r
,

so if we put sj = s∗ := ((1 − c)r)/(ear1n2r), j = 1, . . . ,m,
condition (M1) will be satisfied.

We put p0 := (1− χ/n)n, which is the probability to keep
a solution unchanged in mutation. So (M2) is satisfied.

To satisfy (M3), we first put γ0 := c/4. The fitness of the
dγλe-ranked individual for any γ ≤ γ0 we denote for brevity
fγ . Then at least k ≥ dγλe ≥ γλ individuals have a fitness
greater or equal to fγ . The total fitness of these individuals
is q ≥ kfγ ≥ γλfγ . In view of integrality of all ai, we can
make a worst-case assumption that all individuals less fit than
fγ are of fitness fγ − 1. Thus we have

β(γ, P ) ≥ q

q + (λ− k)(fγ − 1)
≥ q

q + (λ− γλ)(fγ − 1)

≥ γλfγ
γλfγ + (λ− γλ)(fγ − 1)

=
γ

1− (1− γ)/fγ
≥ γ

1− (1− c/4)/f∗
≥ γe(1−c/4)/f

∗
.

Here the last inequality follows from the fact that e−z ≥ 1−z.
Note that p0 = (1 − χ/n)n ≥ exp(−χ(1 − ε)−1) for

any positive constant ε < 1 and n large enough. This can be
shown as follows. We have e−y = 1 − y + α(x)y, where
α(y) tends to 0 when y → 0. Thus for a positive ε and
small enough y > 0 we have e−y ≤ 1 − (1 − ε)y. Given
a positive ε < 1, let us put y := χ/(n(1 − ε)). Then
(1 − χ/n)n ≥ e−yn = exp(−χ/(1− ε)) for all n large
enough.

So we conclude that

p0β(γ, P ) ≥
(
1− f∗χ/(1− ε)− c/4

f∗
+ 1

)
γ.
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Since f∗χ ≤ χNa1 ≤ χna1 = 1 − c, so by setting
ε := 1− 1−c

1−c/2 we get f∗χ(1− ε)−1 ≤ 1− c/2 and

p0β(γ, P ) ≥ γ
(
1 +

c

4na1

)
,

so condition (M3) holds for δ := c/(4na1).
To satisfy condition (M4), we need a population size to be

at least

4

γ0δ2
ln

(
128m

γ0s∗δ2

)
=

16

c(c/(4na1))2
ln

(
512(N + 1)

c((1− c)r/(en2rar1))(c/(4na1))2

)
<

28n2a21
c3

(
ln(N + 1) + (2r + 2) lnn

+(r + 2) ln a1 + 11 + ln
1

c(1− c)r

)
≤ Cn2a21r ln(na1) for a sufficiently large constant C.

The condition then holds for any λ ≥ Cn2a21r ln(na1).
Since all the conditions are satisfied, application of Theo-

rem 1 implies

E [T ] ≤ 8

δ2

N∑
j=1

(
λ ln(3δλ/2) +

1

γ0sj

)
≤ 27n3a21

c2

(
λ lnλ+

4en2rar1
c(1− c)r

)
.

Theorem 3 in particular implies that if ai = 1 for all
i = 1, . . . , n, Algorithm 1 has a polynomially bounded
runtime, if the parameters χ and λ are chosen appropriately.
For sufficiently large λ, the runtime bound (1) can be asymp-
totically improved using Theorem 3.2 from [29] instead of
Theorem 1. The formulation of Theorem 3.2 in [29] however
does not provide explicitly the constants hidden in O (·)-
notation.

IV. EFFICIENCY OF EXPONENTIAL FITNESS SCALING

In this section, we show that the EA can perform efficiently
also if one applies an appropriate nonlinear scaling to the
fitness function. Again we assume all weights aj to be integer
numbers.

Neumann et al [22] proposed the following modification of
the finess function, which may be called exponential fitness
scaling:

f(x, s) := sf(x), (2)

where s is a tunable parameter. In [22], it was proved that
the EA can efficiently optimize ONEMAX and some other
similar functions, assuming s := λ− 1, which grows at least
logarithmically in n. In the following theorem, it is sufficient
that s > eχ is just a constant.

Theorem 4. If f(x) ≡ sRR(x) on X , where s > eχ, then
Algorithm 1, using mutation probability χ/n with a constant

χ > 0, and the size of population λ ≥ 4s
ε3 ln

(
128(n/r+1)senr

ε3χr

)
,

where ε := 3
√

s
eχ − 1, has the expected runtime at most

8n

ε2r

(
λ ln(3ελ/2) +

nres

εχr

)
= O

(
nλ lnλ+ nr+1

)
.

The proof is analogous to that of Theorem 3. The main
difference consists in the application of the Level-Based
Theorem, where the parameter δ now can be set to a constant.
In other words, the selection mechanism behaves similarly to
a rank-based selection [17].

Proof. We apply Theorem 1, using the same set of levels
as in Theorem 3. The total number of levels is m = N + 1,
where N = n/r. We have a lower bound for the improvement
probability s∗ = sj :=

(
1− χ

n

)n−r (χ
n

)r ≥ 1
e

(
χ
n

)r
, which is

suitable for condition (M1).
To meet condition (M2), let us set p0 := (1 − χ/n)n, i. e.

the probability of keeping the solution unchanged in mutation.
To verify (M3), let us put γ0 := ε/s. Now χ as well as s

are constants and s > eχ, therefore ε and γ0 are constants,
and γ0 ∈ (0, 1).

Let us denote the level of a dγλe-ranked individual by fj .
Assume that k ≥ dγλe is the number of individuals at least
as fit as dγλe-ranked individual. The total fitness of these k
individuals, denoted by q, satisfies the inequality q ≥ kfj ≥
dγλefj . For the rest of the individuals we have f(x, s) ≤ fj/s
since f(x) is integer, given integer a1, . . . , aN . The probability
to select one of the k individuals is

β(γ, P ) ≥ γ

(1− k
λ )/s+ γ

≥ γs

1 + ε

for any γ ≤ γ0 = ε/s.

The lower bound for p0 := (1−χ/n)n, as it was shown in
the proof of Theorem 3, gives p0 ≥ e−χ/(1+ε), where ε > 0
is a constant and n is large enough. So it holds that

p0β(γ, P ) ≥
γs

eχ(1 + ε)2
= γ(1 + ε).

The last equality holds because s = eχ(1 + ε)3 due to the
choice of ε. Therefore condition (M3) holds with a constant
δ := ε.

According to (M4), the population size should be not less
than 4

γ0δ2
ln
(

128m
γ0s∗δ2

)
. The condition then holds for any λ ≥

4s
ε3 ln

(
128(n/r+1)senr

ε3χr

)
. Since all the conditions are satisfied,

application of Theorem 1 implies

E [T ] ≤ 8

δ2

n/r∑
j=1

(
λ ln(3δλ/2) +

nre

γ0χr

)

=
8n

ε2r

n/r∑
j=1

(
λ ln(3ελ/2) +

nres

εχr

)
.
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V. CONCLUSIONS AND FURTHER RESEARCH

The paper presents runtime analysis of fitness-proportionate
selection on the class of Royal Road fitness functions and the
linear functions as its subclass. It is supposed that the obtained
lower and upper bounds may be further elaborated to deal
with four-letter alphabet, thus yielding results meaningful for
biology, where the DNA encoding is based on four letters.

On one hand, we claim that with an overwhelming proba-
bility the non-elitist EAs using fitness-proportionate selection
and the bitwise mutation have at least exponential runtime
on the whole class of linear fitness functions, if a mutation
probability χ/n with a constant value of parameter χ > ln 2
is used. On the other hand, we demonstrate that the expected
runtime can be upper-bounded by a polynomial on any Royal
Road function if this function is polynomially bounded and
the parameter χ is inversely proportional to the string length.
Alternatively, polynomially bounded expected runtime may be
achieved in the case of exponential scaling of the Royal Road
fitness function.

Further research might improve the upper bounds on the
runtime of the considered EA, using new versions of the
Level Based Theorem, tighter than the one obtained in [17].
This may be possible, e.g. if the constants in the asymptotic
expressions are found explicitly in the approach proposed
in [29]. Another open question is to tighten the lower bounds
on improvement probabilities sj . Currently these lower bounds
are chosen very pessimistically, assuming that if a Royal
Road block is not chosen optimally, then all of its positions
have wrong values. Obviously, in practice, most often this is
not true. However in order to establish tighter lower bounds
on improvement probabilities it is required to perform a
deeper problem-specific analysis of the evolution of genotype
substrings in the blocks of the Royal Road functions.

ACKNOWLEDGEMENT

The author is grateful to Duc-Cuong Dang, Per Kristian
Lehre and Alexander Spirov for helpful discussions. The
research was supported by the Russian Science Foundation,
grant number 17-18-01536.

REFERENCES

[1] A. Eremeev and A. Spirov, “Estimates from evolutionary algorithms
theory applied to gene design,” in Proc. of 11th International Multicon-
ference Bioinformatics of Genome Regulation and Structure \ Systems
Biology. IEEE, 2018, pp. 33–38.

[2] D. Dang, T. Friedrich, T. Kotzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping local optima using
crossover with emergent diversity,” IEEE Trans. on Evolutionary Com-
putation, vol. 22, no. 3, pp. 484–497, June 2018.

[3] D.-C. Dang, , T. Jansen, and P. K. Lehre, “Populations can be essential
in tracking dynamic optima,” Algorithmica, vol. 78, no. 2, pp. 660–680,
2017.

[4] D.-C. Dang and P. K. Lehre, “Self-adaptation of mutation rates in non-
elitist populations,” in Proc of PPSN’16, 2016, pp. 803–813.

[5] T. Jansen and I. Wegener, “On the utility of populations in evolutionary
algorithms,” in Proc. of GECCO’01, 2001, pp. 1034–1041.
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