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Abstract We study a problem in which at least a given quantity of a single
product has to be partitioned into lots, and lots have to be assigned to the
unrelated parallel machines for processing so that the maximum machine com-
pletion time or the sum of machine completion times is minimized. Machine
dependent lower and upper bounds on the lot size are given. The product
can be continuously divisible or discrete. We derive optimal polynomial time
algorithms for several special cases of the problem. For other cases we pro-
vide NP-hardness proofs and demonstrate existence of fully polynomial time
approximation schemes.
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1 Introduction

The following problem has been observed as a special case in the production of
chemical granules, see Shaik et al. [18], and fuel supply management, see Austin
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and Hogan [2]. Its solution can be employed in metaheuristics for solving a
more general problem, similar to that in Borisovsky [3]. There is a demand for
at least A units of a single product to be produced on m, m ≥ 2, unrelated
parallel machines in lots. The size of a lot is the number of units of the product
this lot includes. It can take either integer value or real value, in which cases
the product is called discrete and continuous, respectively. Machine i requires
pi · x time units to produce a lot of size x, i = 1, . . . ,m. If a lot of size x is
assigned to machine i, then the lot size must satisfy the relation li ≤ x ≤ ui,
where li and ui are given lower and upper bounds, i = 1, . . . ,m. The problem
is to partition at least A units of the product into lots and assign these lots
to the machines so that the maximum machine completion time or the total
machine completion time is minimized. Both criteria are related to the fair
distribution of the machine workloads. Setup times and costs are assumed to
be negligibly small, and therefore, they are not considered. It is also assumed
that the values A, ui and pi, i = 1, . . . ,m, are positive integer numbers, and
the values li, i = 1, . . . ,m, are non-negative integer numbers.

We denote this problem as R|1, α, β|γ, where α ∈ {lot,GT}, β ∈
{cntn, dscr}, γ ∈ {CΣ , Cmax}. Following scheduling traditions, notation R
refers to unrelated parallel machines. Notation 1 in the middle field indicates
the case of a single product. Notations lot and GT are used to distinguish
the general case (lot) and the case in which at most one lot can be assigned
on the same machine (GT – Group Technology). Abbreviations cntn and dscr
specify continuous and discrete product, respectively. Maximum machine com-
pletion time and total machine completion time are denoted as Cmax and CΣ ,
respectively.

The following mathematical programming formulation for the problem
R|1, α, β|γ can be given.

min

m∑
i=1

Ci, if γ = CΣ , (1)

min Cmax, if γ = Cmax, (1′)

Cmax ≥ Ci, i = 1, . . . ,m, if γ = Cmax, (1′′)

Ci = pixi, i = 1, . . . ,m, (2)

m∑
i=1

xi ≥ A, (3)

zili ≤ xi ≤ ziui, i = 1, . . . ,m, (4)

xi ∈ R+, if β = cntn, (5)

xi ∈ Z+, if β = dscr, (5′)

zi ∈ Z+, if α = lot, (6)

zi ∈ {0, 1}, if β = GT. (6′)
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The variables are the maximum machine completion time Cmax, the com-
pletion time Ci of machine i, the production volume xi on machine i, and
the number of lots zi on machine i, i = 1, . . . ,m. Equalities (2) link machine
completion times to the production volumes on these machines. Relation (3)
ensures that the required quantity of the product is assigned to the machines.
Relations (4) connect production volume xi with the number of lots zi on each
machine i. This constraint is met for machine i if and only if there exists a
number zi of lots, whose sizes are between li and ui and the total production
volume on the machine is xi. Conditions (5) and (5′) address the assumptions
that the product is either continuously divisible (5) or discrete (5′). Condi-
tions (6) and (6′) define the admissible number of lots on each machine.

Note that if the condition (4) is satisfied and zi ≥ 1, then the corresponding
lot sizes may be set to xi/zi in the case of β = cntn. In the case β = dscr,
all lot sizes on machine i can be chosen from the set {φi, ψi} of two numbers,
where φi = dxi/zie and ψi = bxi/zic. If φi = ψi, then the sizes of all lots on
machine i can be set to xi/zi, alternatively, if φi = ψi + 1, then ki = xi− ziψi
lots will be of size φi and zi−ki lots will be of size ψi, which is implied by the
equation kiφi + (zi − ki)(φi − 1) = xi.

Problem R|1, α, β|γ falls into the category of batch scheduling problems
(Potts and Kovalyov [16], Allahverdi et al. [1]), for which terminologies “lot-
sizing” (Potts and Van Wassenhove [17], Chen et al. [6]) and “job splitting”
(Logendran and Subur [12], Tahar et al. [20]) are also used, especially, in the
situations where a partition of a group of identical items (a job) into lots (job
sections) appears to be more natural than their unification into batches. The
specificity of the problem R|1, α, β|γ distinguishing it from the models in the
above references is the presence of lower and upper bounds on the lot sizes. The
most closely related problem was studied by Dolgui et al. [7], in which there
are several products, machine dependent lot size lower bounds, machine and
sequence dependent setup times, and the objective is to minimize Cmax. This
problem is strongly NP-hard because the Traveling Salesman Problem
reduces to it. In [7], it was proved NP-hard even if the number of products
is n = 2. Several dynamic programming algorithms for the special cases were
developed. Results from [7] can not be employed for R|1, α, β|Cmax because
the upper bounds ui on the lot sizes are not considered in [7].

The so-called Supply Scheduling Problem (SSP) is also closely re-
lated to the problem in this paper. In SSP, there are m providers that supply
a certain product to a manufacturing unit. If provider i is not used, then the
corresponding delivered quantity is xi = 0. If provider Pi is used, then the
delivered quantity xi must be between the given lower and upped bounds li
and ui. The demand at the manufacturing unit is A. The delivery cost for
sending a quantity xi from provider Pi to the manufacturing unit is ci(xi),
where ci(·) is a cost function which can be linear as it is in Chauhan et al. [4]
and Eremeev et al. [9], or it can be given by an oracle as it is in Chauhan et
al. [5] and Ng et al. [14]. The goal is to minimize the total delivery cost, sub-
ject to the condition that the manufacturing demand is satisfied. The SSP is
NP-hard in the ordinary sense and several FPTASes are proposed for different
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versions of this problem in [4,5,9,14]. A Fully Polynomial Time Approximation
Scheme (FPTAS) is a collection of (1+ε)-approximation algorithms {Aε} such
that algorithm Aε guarantees relative error ε, and it runs in time polynomial
in 1/ε and in the problem instance length in binary encoding. FPTASes are
theoretically best approaches to handling NP-hard problems (Garey and John-
son [10]). Their experimental verification for knapsack type problems shows
good performance and solution quality (see, e.g., Martello and Toth [13] and
Kovalyov et al. [11]).

A modification of SSP with a requirement to supply exactly A units of
the product and piecewise concave cost functions was studied by Shor and
Stecuk [19]. An important structural property of optimal solutions was estab-
lished and a dynamic programming algorithm was developed. A generalization
of SSP to the case of concave non-decreasing cost functions and several feasi-
ble intervals for the delivered quantity was studied by Eremeev et al. [8]. An
FPTAS was developed. It employs a property similar to that in [19].

In the next section, the case of at most one lot on each machine (GT )
is studied. Polynomial time algorithms are developed for all variations of the
problem of minimizing Cmax. All variations of the problem of minimizing CΣ
are shown NP-hard, and FPTASes are presented. In Section 3, the general
case (lot) is studied. Again, polynomial time algorithms are developed for all
variations of the problem of minimizing Cmax, and all variations of the problem
of minimizing CΣ are shown NP-hard. FPTASes are given for the NP-hard
problems. The paper concludes with a table of the results and suggestions for
future research.

2 At most one lot on each machine

In this section, we study the problem R|1, GT, β|γ, β ∈ {cntn, dscr}, γ ∈
{CΣ , Cmax}.

2.1 Minimizing total machine completion time

For the problem R|1, GT, β|CΣ , we only note that it is equivalent to the ear-
lier studied NP-hard problem SSP with linear cost functions proportional to
the delivered quantities. This latter problem is well studied. For example, it
admits an FPTAS with running time O(m3/ε), see Eremeev et al. [4,9] and
Ng et al. [14].

A special case of R|1, GT, β|CΣ , β ∈ {cntn, dscr} in which ui = A, i =
1, . . . ,m, is trivially solvable in O(m) time by selecting a machine with the
minimal pi value and allocating A product units to this machine. Another
special case with li = l and ui = u, i = 1, . . . ,m, is solvable in O(m logm)
time by a greedy algorithm, which starts with x = (0, . . . , 0) and iteratively
re-sets production volume xk := max{l,min{u,A−

∑
i xi}} to the machine k

with the minimal value pi among those with xi = 0.
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2.2 Minimizing maximum machine completion time

In this sub-section, we describe an optimal O(m logm) time solution algorithm
for the problem R|1, GT, cntn|Cmax.

We begin with computing values lipi and uipi, i = 1, . . . ,m, and sorting
these values in non-decreasing order. Denote the set of distinct values lipi and
uipi, i = 1, . . . ,m, as {D1, . . . , Dt}, where t ≤ 2m. Assume without loss of
generality that D1 < · · · < Dt. Assume that t ≥ 2 because otherwise the
problem is trivial. Denote by C∗ the optimal solution value of the problem
R|1, GT, cntn|Cmax. It is easy to see that there exists an index k∗, 1 ≤ k∗ ≤
t−1, such that Dk∗ ≤ C∗ ≤ Dk∗+1. For any k, k = 1, . . . , t−1, let us partition
machines into the following three sets:

Beforek = {i|uipi < Dk},

Betweenk = {i|lipi ≤ Dk ≤ Dk+1 ≤ uipi},

Afterk = {i|Dk+1 < lipi}.

The above three definitions account for the possible location of the interval
[Dk, Dk+1] with respect to the interval [lipi, uipi]. It is clear that there exists an
optimal solution x∗ such that x∗i = ui for i ∈ Beforek∗ , x∗i = 0 for i ∈ Afterk∗

and

x∗i pi = max{xipi | xipi ≤ C∗} for i ∈ Betweenk∗ .

The latter equalities are equivalent to x∗i = C∗/pi for i ∈ Betweenk∗ . We
deduce

m∑
i=1

x∗i =
∑

i∈Beforek∗

ui + C∗
∑

i∈Betweenk∗

(1/pi) ≥ A,

and hence,

C∗ ≥
A−

∑
i∈Beforek∗ ui∑

i∈Betweenk∗ (1/pi)
.

Denote Uk :=
∑
i∈Beforek

ui and Ik :=
∑
i∈Betweenk

(1/pi) for all k = 1, . . . , t.
Note that either C∗ = Dk∗ or the total production volume in all optimal so-
lutions is exactly A and C∗ = (A−Uk∗)/Ik∗ (or both conditions hold). Thus,
the problem R|1, GT, cntn|Cmax can be solved by computing t− 1 values

Rk = max
{
Dk,

A− Uk
Ik

}
, k = 1, . . . , t− 1, (7)

and determining an index k∗ such that

Rk∗ = min{Rk | Rk ≤ Dk+1, k = 1, . . . , t− 1}.

The optimal solution value can be calculated as C∗ = Rk∗ , and the correspond-
ing optimal values x∗i can be determined such that x∗i = ui for i ∈ Beforek∗ ,
x∗i = 0 for i ∈ Afterk∗ and x∗i = C∗/pi for i ∈ Betweenk∗ .
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Assume that the values D1, . . . , Dt are given such that D1 < · · · < Dt.
Then all the sets Beforek, Betweenk, Afterk, k = 1, ..., t− 1, can be computed
in O(m) time. Furthermore, if the values Uk, Ik and Rk are known for some
k, then the values Uk+1, Ik+1 and Rk+1 can be computed in a constant time.
Therefore, the index k∗ can be computed in O(t) = O(m) time. We obtain the
following proposition.

Proposition 1 The problem R|1, GT, cntn|Cmax can be solved in O(m logm)
time.

A special case of problem R|1, GT, cntn|Cmax, in which ui ≥ A, i =
1, . . . ,m, is a special case of the problem R|∆slij , cntn|Cmax with n products
studied in [7]. By using notation from [7], this special case can be represented
as R|∆slij , cntn|Cmax with extra assumptions that n = 1 and an upper bound
on the total production is B ≥

∑m
i=1 ui. The best algorithm proposed for

this special case in [7] runs in O(τβ2m) time, were τβ is the time to solve a
supplementary linear programming problem.

It sometimes happen that an optimal solution for the discrete case of a
problem can be obtained by an appropriate rounding of the components of an
optimal solution of the corresponding continuous case. Let us show that this
approach does not work for the problem R|1, GT, dscr|Cmax. Consider an ex-
ample in which m = 3, A = 68, l1 = l2 = l3 = 0, u1 = u2 = u3 = +∞, p1 = 9,
p2 = p3 = 88. An optimal solution of the continuous problem is vector x0

with the components x01 = C0/p1 ≈ 56.45 and x02 = x03 = C0/p3 ≈ 5.8, where
C0 = Ap1p2/(p2 + p1 + p1) ≈ 508.1 is the optimal makespan value. The only
way to obtain a feasible solution for the corresponding discrete problem from
x0 is to round up at least two of its components, which gives the makespan
value of at least 528. However, the optimal makespan value for the correspond-
ing discrete problem is 522, which is attained for x∗ = (dx01e+ 1, bx02c, bx03c).

The discrete problem R|1, GT, dscr|Cmax can be solved by the following
bisection search algorithm. Let C∗ denote the optimal makespan value. Recall
that the values A, ui and pi, i = 1, . . . ,m, are positive integer numbers, and
the values li, i = 1, . . . ,m, are non-negative integer numbers.

Algorithm BiSec(GT )

Step 1 (Search range) Calculate r = arg mini{lipi}. If lr ≥ A, then vector
x with xr = lr and xi = 0 for i 6= r is an optimal solution. Stop. If∑m
i=1 ui < A, then there is no feasible solution. Stop. If lr < A ≤

∑m
i=1 ui,

then initialize LB := mini{lipi} and UB := maxi{uipi}. Note that
C∗ ∈ [LB + 1, UB]. Calculate feasible solution x̃ := (u1, . . . , um) with
value UB. Set k := 1.

Step 2 (New solution x(k)) Calculate Fk := b(LB + UB)/2c and x
(k)
i :=

bFk/pic, i = 1, . . . ,m. If x
(k)
i < li, then re-set x

(k)
i := 0, and if x

(k)
i > ui,

then re-set x
(k)
i := ui, i = 1, . . . ,m. Re-set Fk := maxi{x(k)i pi}.

Step 3 (Testing feasibility) If
∑
i x

(k)
i ≥ A, then x(k) is feasible. In this case,

re-set UB := Fk and x̃ := (x
(k)
1 , . . . , x

(k)
m ). If

∑
i x

(k)
i < A, then x(k) is
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infeasible. In this case, re-set LB := b(LB + UB)/2c and note that there
is no feasible solution with value LB or less, because x(k) maximizes the
production volume provided that Cmax ≤ b(LB + UB)/2c.

Step 4 (Testing optimality) If UB−LB > 1, then re-set k := k+1 and repeat
Step 2. If UB−LB = 1 and x(k) is feasible, then x(k) is an optimal solution
with value Fk, because the Cmax value is integer, there is no feasible solution
with value Cmax = LB and x(k) with value Cmax(x(k)) = UB is feasible.
Stop. If UB − LB = 1 and x(k) is infeasible, then x̃ is an optimal solution
with value UB. Stop.

Observe that, in iteration k of Step 2, there is no feasible solution with

the makespan value C0
max such that Cmax(x(k)) = maxi{x(k)i pi} < C0

max <

b(LB +UB)/2c because each value x
(k)
i is maximum in the domain 0∪ [li, ui]

provided that Cmax ≤ b(LB + UB)/2c. This observation, together with a
standard justification of the bisection search algorithms, leads to the following
proposition.

Proposition 2 The problem R|1, GT, dscr|Cmax can be solved in weakly poly-
nomial time O(m log maxi{uipi}).

3 Arbitrary number of lots on each machine

In this section, we consider the general problem R|1, lot, β|γ, β ∈ {cntn, dscr},
γ ∈ {Cmax, CΣ}. First of all, observe that if ui ≥ 2li, i = 1, . . . ,m, then the
intervals [li, ui], [2li, 2ui], . . . of feasible production volumes on machine i merge
into a single interval [li, A], i = 1, . . . ,m. In this case, the problem R|1, lot, β|γ
and the problem R|1, GT, β|γ, in which ui = A, i = 1, . . . ,m, are equivalent
for any β and γ. Therefore, the algorithmic results of Section 2 for the problem
with GT assumption apply for the problem R|1, lot, β|γ in this case. In the
rest of this section, we assume that the condition ui ≥ 2li, i = 1, . . . ,m, is not
satisfied.

3.1 Minimizing total machine completion time

Firstly, note that a special case of the problem R|1, lot, β|CΣ , β ∈ {cntn, dscr},
in which ui = A, i = 1, . . . ,m, can be solved in O(m) time in the same way
as for the problem R|1, GT, β|CΣ . A special case with li = l and ui = u,
i = 1, . . . ,m, can be solved in O(m) time by selecting a machine with the
minimal pi value and allocating max{ldA/ue, A} units of the product to this
machine.

In the general setting, the problem R|1, lot, β|CΣ for β = cntn or β = dscr
is NP-hard, because the well-known NP-complete decision problem Integer
Knapsack [10] polynomially reduces to its special case in which ui = li,
i = 1, . . . ,m. We now show that this problem admits an FPTAS.
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Theorem 1 The problem R|1, lot, β|CΣ, β ∈ {cntn, dscr}, admits an FPTAS

with the running time O
(
m2

ε2 log r +m2 log r log log r
)

, where r = mini{pi(A+

li)}/(pminA), pmin = mini{pi}.

Proof. Ng et al. [14] presented an FPTAS for the problem SSP, which can be
formulated as follows.

min

n∑
i=1

ci(xi),

subject to
n∑
i=1

xi ≥ B,

xi ∈ Xi = {0} ∪ [ai, bi], i = 1, . . . , n.

The following assumptions were employed in [14]:

1. Each function ci(x) is defined on a set Xi ⊆ Xi, i = 1, . . . , n.
2. bi ∈ Xi, i = 1, . . . , n.
3.
∑n
i=1 bi ≥ B.

4. 0 ≤ ci(x) <∞ for x ∈ Xi, i = 1, . . . , n.
5. Each function ci(x) is continuous in each point x ∈ Xi, i = 1, . . . , n.
6. Given x ∈ Xi, the value ci(x) can be computed in a constant time, i =

1, . . . , n.
7. Given a real number t, each value max{x | x ∈ Xi, ci(x) ≤ t} can be

computed in a constant time, i = 1, . . . , n.
8. Each value cmin

i = min{ci(x) | x ∈ Xi, ci(x) > 0} can be computed in a
constant time, i = 1, . . . , n.

The problem R|1, lot, β|CΣ is a special case of the problem SSP, in which
n = m, B = A, ai = li, the cost functions are

ci(xi) =

{
pixi if xi ∈ Xi,
+∞, otherwise,

i = 1, . . . ,m,

the sets Xi are

Xi =

{
∪Ki−1
k=1 [kli, kui] ∪ [Kili, A] ∪ {0}, if A ∈ [Kili,Kiui],

∪Ki−1
k=1 [kli, kui] ∪ {0}, otherwise,

where Ki = dA/uie, i = 1, . . . ,m, i.e. Ki is the minimum integer number
that satisfies Kui ≥ A. Finally, for each i = 1, . . . ,m we assume bi = A if
A ∈ [Kili,Kiui], and bi = (Ki − 1)ui otherwise.

For this special case all the assumptions in [14] are satisfied. To calcu-
late the function ci(x), it is sufficient to recognize the case x ∈ Xi, which
is equivalent to the existence of an integer number k (the number of lots
on machine i) such that kli ≤ x ≤ kui and x ≤ A. The latter condition
is equivalent to dx/uie ≤ bx/lic and x ≤ A, which can be recognized in a
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constant time. To calculate max{x | x ∈ Xi, ci(x) ≤ t}, we can first calcu-
late max{x | pix ≤ t} = t/pi, then calculate Kt = dt/(uipi)e, which is the
minimum integer number such that Ktui ≥ t/pi. After that there are two
cases: a) if t/pi ∈ [Ktli,Ktui], then xi(t) = t/pi or xi(t) = dt/pie depend-
ing on whether the problem is continuous (cntn) or discrete (dscr), and b)
if t/pi 6∈ [Ktli,Ktui], then xi(t) = (Kt − 1)ui. All these calculations can be
performed in a constant time.

The FPTAS in [14] runs in O
(
n2

ε2 log(U/L) + n2 log(U/L) log log(U/L)
)

time, where L and U are lower and upper bounds, respectively, on the optimal
solution value. Let us determine these bounds for our special case. The upper
bound can be equal to the value of any feasible solution, for example, the best
solution in which all items are produced on the same machine i, i = 1, . . . ,m:
U = mini{pi(A + li)}, because either A is a feasible production volume on
machine i, or A falls between two intervals [kli, kui] and [(k + 1)li, (k + 1)ui]
of feasible production volumes on machine i for some number of lots k. In the
latter case, A + li ∈ [(k + 1)li, (k + 1)ui] and A + li is a feasible production
volume on machine i. The lower bound L can be established as follows. Let
x∗i be optimal production volume on machine i, i = 1, . . . ,m. We have

m∑
i=1

pix
∗
i ≥ pmin

m∑
i=1

x∗i ≥ pminA := L.

We deduce that the problem R|1, lot, β|CΣ admits an FPTAS with the
running time indicated in the statement of the theorem. tu

Eremeev et al. [8] studied a modification of the problem R|1, lot, cntn|CΣ ,
in which, instead of the lower and upper bounds on the lot size, a set of ad-

missible lot size intervals [l
(t)
i , u

(t)
i ], t = 1, . . . , I(i), is given for each machine i.

An FPTAS with the running time O((log log r + 1/ε)Imaxm
3) was presented

in [8] for this modification of the problem, where Imax = maxi=1,...,m{I(i)}
and r is the same as in Theorem 1. An obvious reduction of R|1, lot, cntn|CΣ
to the problem with a set of admissible lot size intervals allows to employ the
FPTAS from [8] as an approximation algorithm for R|1, lot, cntn|CΣ . How-
ever, the algorithm from [8] requires the set of admissible lot size intervals to
be explicitly presented, and their number is exponential if A/ui is exponential
for some i. Therefore, the approximation algorithm from [8] is exponential for
the problem R|1, lot, cntn|CΣ . With respect to 1/ε, the running time of the
FPTAS in Theorem 1 is Ω(1/ε2), while the approximation algorithm from [8]
is linear in 1/ε.

3.2 Minimizing maximum machine completion time

The problem R|1, lot, dscr|Cmax can be solved in weakly polynomial time by
a modification of the bisection search algorithm BiSec(GT ). The required
changes are that the initial upper bound is re-set in Step 1 as UB :=
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mini{pi(A+ li)}, the candidate solutions are re-set in Step 2 as x
(k)
i := xi(t),

where t = Fk, i = 1, . . . ,m, and xi(t) is calculated as it is described in
the proof of Theorem 1. We denote the modified algorithm BiSec(GT ) as
BiSec(lot,dscr).

Proposition 3 The problem R|1, lot, dscr|Cmax can be solved in weakly poly-
nomial time O(m log(mini{pi(A+ li)})).

Consider the continuous problem R|1, lot, cntn|Cmax. Denote by x∗ and
C∗max an optimal solution and its makespan value, respectively. Assume that
x∗ ∈ X0, where X0 is a subset of all feasible solutions. If

Cmax(x(1))− Cmax(x(2)) ≥ 1/∆ (8)

for any x(1) ∈ X0 and x(2) ∈ X0 with distinct Cmax values, and a positive
integer number ∆, then the bisection search algorithm BiSec(lot,dscr) can
be modified to solve this problem. The modification is that, in Step 2, we
understand operator b(LB+UB)/2c as rounding down to the nearest rational
number X/∆, where X is an integer number, and in Step 4, the inequality
UB−LB > 1 and the equality UB−LB = 1 are replaced by UB−LB > 1/∆
and UB − LB = 1/∆, respectively. We denote the modified algorithm as
BiSec(lot,cntn). The running time of this algorithm is O(m log(∆mini{pi(A+
li)})).

Let us show that the relation (8) is satisfied for a certain set X0 and

∆ = (

m∑
i=1

∏
j∈{1,...,m},j 6=i

pj)
2. (9)

If C∗max is integer, then we can define X0 as the set of all optimal solutions
and∆ = 1. Assume that C∗max is not integer. Consider an optimal solution x0 =
(x01, . . . , x

0
m). Denote by I(x0) and N(x0) the sets of indices of its integer and

non-integer components, respectively, N(x0) ∪ I(x0) = {1, . . . ,m}. Without
loss of generality, we can assume pix

0
i = C∗max for all i ∈ N(x0) because

otherwise a non-integer value x0i can be increased up to an integer value or
such a value that pix

0
i = C∗max, and the optimality will be maintained. Next,

we can also assume that
∑m
i=1 x

0
i = A, because otherwise any non-integer

value x0i can be decreased down to an integer value or to A−
∑
j 6=i x

0
i and the

optimality will be maintained. We define X0 as the set of solutions x0 such
that pix

0
i = C∗max, i ∈ N(x0), and

∑m
i=1 x

0
i = A. For any x0 ∈ X0 we have

x0i = C∗max/pi, i ∈ N(x0), and∑
i∈N(x0)

x0i +
∑

i∈I(x0)

x0i = C∗max

∑
i∈N(x0)

(1/pi) +
∑

i∈I(x0)

x0i = A,

from where it follows that

C∗max =
A−

∑
i∈I(x0) x

0
i∑

i∈N(x0)(1/pi)
=

∏
i∈N(x0) pi(A−

∑
i∈I(x0) x

0
i )∑

i∈N(x0)

∏
j∈N(x0),j 6=i pj

.
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We deduce that (8) are satisfied for any x(1) ∈ X0, x(2) ∈ X0, and ∆ defined
in (9). Therefore, the following proposition holds.

Proposition 4 The problem R|1, lot, cntn|Cmax can be solved in weakly poly-
nomial time O(m log(∆mini{pi(A+ li)})), where ∆ is defined in (9).

Existence of a strongly polynomial algorithm for any of the problems
R|1, lot, cntn|Cmax and R|1, lot, dscr|Cmax remains unknown.

4 Conclusion

The computational complexity and algorithmic results obtained in this paper
are summarized in Table 1.

Table 1 Computational complexity and algorithmic results

Problem Complexity Reference

R|1, GT, β|CΣ Optimal solution NP-hard, Section 2,
O(m3/ε) [4,9,14]

R|1, GT, cntn|Cmax O(m logm) Proposition 1
R|1, GT, dscr|Cmax O(m log maxi{uipi}) Proposition 2
R|1, GT, β|CΣ , ui = A O(m) Section 2
R|1, GT, β|CΣ , li = l, ui = u O(m logm) Section 2
R|1, lot, β|CΣ Optimal solution NP-hard, Subsection 3.1

O

(
m2

ε2
log r +m2 log r log log r

)
Theorem 1

R|1, lot, dscr|Cmax O(m log(mini{pi(A+ li)})) Proposition 3
R|1, lot, cntn|Cmax O(m log(∆mini{pi(A+ li)})) Proposition 4
R|1, lot, β|γ, ui ≥ 2li Reduction to R|1, GT, β|γ Section 3

with ui = A, i = 1, . . . ,m
R|1, lot, cntn|CΣ , ui = A O(m) Subsection 3.1
R|1, lot, dscr|CΣ , li = l, ui = u O(m) Subsection 3.1

Further research can be undertaken in the following directions:

- establishing computational complexity and developing efficient algorithms
for the case of more than one product and other generalizations of the
problem R|1, α, β|γ;

- developing strongly polynomial algorithms for the problems
R|1, GT, dscr|Cmax and R|1, lot, β|Cmax;

- establishing computational complexity and developing efficient algorithms
for the problem R|1, α, β|γ, in which li = l or ui = u for all i.
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