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1 INTRODUCTION

The genetic algorithms (GAs) are randomized heuristic algorithms that employ a population
of tentative solutions (individuals), which is iteratively updated by means of selection, mu-
tation and crossover operators, thus simulating an evolutionary type of search for optimal or
near-optimal solutions. Different modifications of GAs are widely used in areas of operations
research and artificial intelligence. A wider class of evolutionary algorithms (EAs), having a
more flexible outline, possibly neglecting the crossover operator and admitting a population
which consists of a single individual. Two major types of evolutionary algorithm outline are
now well-known: the elitist EAs keep a certain number of “most promising” individuals from
the previous iteration, while the non-elitist EAs compute all individuals of a new population
independently using the same randomized procedure.

The theoretical analysis of GAs has been subject of an increasing interest over the last
two decades and several different approaches have been developed. A significant progress in
understanding of non-elitist GAs was made in [33] by means of dynamical systems. However
most of the findings in [33] apply to the infinite population case, so it is not clear how these
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results can be used to estimate the runtime of GAs, i.e. the expected number of individuals
computed and evaluated until the optimum is found for the first time. A theoretical possibility
of constructing GAs that provably optimize an objective function with high probability in
polynomial time was shown in [32] by rapidly mixing Markov chains. However [32] provides
only a very simple artificial example where this approach is applicable. The drift analysis
was first adapted to studying elitist EAs in [19] and further extended in [11, 24] to non-elitist
EAs without a crossover.

A series of works has attempted to show that the use of crossover operator in GAs and
other evolutionary algorithms can reduce their runtime (see e.g. [20, 23, 26, 31]) but most
of the positive results apply to families of problem instances with specific structure. At the
same time [28] showed that a well-known non-elitist GA with proportional selection operator is
inefficient on one of the most simple benchmark functions OneMax, even when the crossover
is used. In [27], a general runtime result is proposed for a class of convex search algorithms,
including many non-elitist GAs without mutation, on the so-called concave fitness landscapes
(a discrete-space counterpart of a concave maximization problem). As a corollary, for another
well-known benchmark function LeadingOnes, it is shown that the convex search algorithm
has O(n log n) runtime, which means that it is faster than all EAs using only mutation [27].
Upper bounds obtained for the runtime of GAs with crossover in [10] match (up to a constant
factor) the analogous upper bounds known for mutation-only GAs [11]. In [13], sufficient
conditions are found under which a non-elitist GA with tournament selection first visits a
local optimum of a pseudo-Boolean function in polynomially bounded time on average. The
bounds from [13] indicate that if a local optimum is efficiently computable by the local search
method, it is also computable in expected polynomial time by a GA with tournament selection.

In the present paper, the genetic algorithms are studied on a wide class of combinato-
rial optimization problems. The expected number of tentative solutions constructed, until
first visiting a desired area for the first time, is considered as the main criterion of GA effi-
ciency. Such an area may consist of locally optimal solutions or of globally optimal solutions
or of feasible solutions with sufficiently small relative error. The main result is obtained by
combining the approaches from [13, 25] and the result applies to a wider range of selection
operators, compared to [13], including the proportional selection of Canonical GA [17] (the
term “Canonical GA” was coined in [29]). Considering the selection operators with very high
selection pressure, in this paper, we can neglect the probability of downgrading mutations
although this probability needs to be taken into account in [10, 11]. By downgrading mu-
tations here we mean mutations that decrease the quality of solutions (a formal definition
of downgrading mutation will be given further). In contrast to [10, 11], here we consider
explicitly the constrained optimization problems and the expected first hitting time of the set
of local optima.

In the most general setting, a combinatorial optimization problem with a maximization
criterion is formulated as follows:

max{F (x) | x ∈ Sol}, (1)

where Sol ⊆ X is the set of feasible solutions, X = {0, 1}n is the search space, F (·) is the
objective function. The optimal value of the criterion is denoted by F ∗. The minimization
problems are formulated analogously. Without loss of generality, by default we will consider
the maximization problems. The results will hold for the minimization problems as well.



Genetic Algorithms. In the process of the GA execution, a sequence of populations P t =
(x1,t, . . . , xλ,t), t = 0, 1, . . . , is computed, where each population consists of λ genotypes.
In the present paper, by the genotypes we mean the elements of the search space X , and
genes xi, i ∈ [n] are the components of a genotype x ∈ X . Here and below, we use the
notation [n] := {1, 2, ..., n} for any positive integer n.

An initial population P 0 consists of randomly generated genotypes, and every next popu-
lation is constructed on the basis of the previous one. For convenience of GA description, in
what follows we assume that the population size λ is even.

In each iteration of a GA, λ/2 pairs of parent genotypes are chosen from the current
population P t using the randomized selection procedure Sel : X λ → [λ]. In this procedure, a
parent genotype is independently drawn from the previous population P t where each individ-
ual is assigned a selection probability depending on its fitness f(x). Usually a higher fitness
value of an individual implies higher (or equal) selection probability. We assume that the
fitness function is defined on the basis of objective function. If x ∈ Sol then f(x) = φ(F (x)),
where φ : R → R+ is a monotone increasing function in the case of maximization problem
or a monotone decreasing function in the case of minimization problem. Otherwise (i.e. if
x 6∈ Sol), the fitness incorporates some penalty, which ensures that f(x) < miny∈Sol F (y).

Given the current population, each pair of offspring genotypes is created independently
from other pairs by the randomized operators of crossover and mutation. Some authors
consider crossover operators that output a single genotype (see e.g. [10, 7, 28, 21, 33]), while
others consider crossovers with two output genotypes (see e.g. [5, 17, 29, 32]). For the sake of
uniform treatment of both versions of crossover, let us denote the number of output genotypes
by r, r ∈ {1, 2}. In what follows, we assume that Cross : X × X → X r and Mut : X → X are
efficiently computable by randomized routines. When a new population P t+1 is constructed,
the non-elitist GA proceeds to the next iteration.

Algorithm 1. Non-Elitist Genetic Algorithm in the case of r = 2

Generate the initial population P 0, assign t := 1.
While a termination condition is not met do:

Iteration t.
For j from 1 to λ/2 do:

Selection: i := Sel(P t), i′ := Sel(P t).
Crossover: (x, y) := Cross(xit, xi′t).
Mutation: x2j−1,t+1 := Mut(x), x2j,t+1 := Mut(y).

End for.
t := t + 1.

End while.

Algorithm 2. Non-Elitist Genetic Algorithm in the case of r = 1

Generate the initial population P 0, assign t := 1.
While a termination condition is not met do:

Iteration t.
For j from 1 to λ do:



Selection: i := Sel(P t), i′ := Sel(P t).
Crossover: x := Cross(xit, xi′t).
Mutation: xj,t+1 := Mut(x).

End for.
t := t + 1.

End while.

The output of a GA is an individual with the maximum fitness value in all populations
constructed until the termination condition was met.

In the theoretical analysis of GAs it is often assumed that the algorithm constructs an
infinite sequence of populations and that the termination condition is never met. In practice,
the termination condition is required not only to stop the search and output the result,
but also to perform multiple restarts of the GA with random initialization [5, 8]. Multiple
independent runs of randomized algorithms or local search (multistart) are widely used to
prevent localization of the search in the “unpromising” areas of the search space (see e.g. [9])
and applicability of multistart to the evolutionary algorithms has some theoretical basis [12,
32].

In this paper, together with the standard version of Non-Elitist GA (Algorithms 1 and 2),
we study the GA with multistart, where a GA outlined as Algorithm 1 or 2 is ran independently
from the previous executions for an unlimited number of times. The stopping criterion in
Algorithm 1 or 2 in this case is the iterations limit t ≤ tmax, where tmax is a tunable parameter.

In what follows, we consider three options for selection operator: the tournament se-
lection [18], the (µ, λ)-selection [25], and the proportional selection [17]. In k-tournament
selection, k individuals are sampled uniformly at random (with replacement) from the pop-
ulation, and the fittest of these individuals is returned. The tunable parameter k is called
the tournament size. In (µ, λ)-selection, parents are sampled uniformly at random among the
fittest µ individuals in the population P t. In the case of proportional selection,

Pr(Sel(P t) = i) :=
f(xit)∑λ

j=1 f(xjt)
, (2)

if
∑λ

j=1 f(xjt) > 0; otherwise the index of the parent individual is chosen uniformly at random.
Canonical Genetic Algorithm proposed in [17] corresponds to the GA outline with r = 2,

where all individuals of the initial population are chosen independently and uniformly from X .
This GA uses the proportional selection, a single-point crossover Cross∗ and a bitwise mutation
Mut∗. The last two operators work as follows.

The single-point crossover computes (x′, y′) = Cross∗(x, y) for two input genotypes
x = (x1, ..., xn), y = (y1, ..., yn), so that with a given probability pc,

x′ = (x1, ..., xχ, yχ+1, ..., yn), y′ = (y1, ..., yχ, xχ+1, ..., xn),

where the random position χ is chosen uniformly from 1 to n − 1. With probability 1− pc

both parent individuals are copied without any changes, i.e. x′ = x, y′ = y.
The bitwise mutation Mut∗ computes a genotype x′ = Mut∗(x), where independently

of other bits, each bit x′i, i ∈ [n], is assigned a value 1 − xi with probability pm and with



probability 1−pm it keeps the value xi. The tunable parameter pm is also called the mutation
rate. Choosing the mutation rate, many authors assume pm = 1/n.

Another well-known operator of point mutation with a given probability pm modifies one
randomly chosen bit, otherwise (with probability 1 − pm), the given genotype remains un-
changed.

The following condition holds for many well-known crossover operators: there exists a
positive constant ε0 which does not depend on the problem instance, such that the output of
crossover (x′, y′) = Cross(x, y) satisfies the inequality

ε0 ≤ Pr
(

max{f(x′), f(y′)} ≥ max{f(x), f(y)}
)
. (3)

for any x, y ∈ X . Condition (3) suggests that the fitness of at least one of the genotypes
resulting from crossover (x′, y′) = Cross(x, y) is not lower than the fitness of the parents
x, y ∈ X with probability at least ε0. This condition is fulfilled for the single-point crossover
with ε0 = 1−pc, if pc < 1 is a constant. In the case of crossover operator with a single output
genotype x′ = Cross(x, y), the analogous condition is as follows

ε0 ≤ Pr
(
f(x′) ≥ max{f(x), f(y)}

)
. (4)

Condition (4) is also satisfied with ε0 = 1 for the optimized crossover operators, where at
least one of the two offspring is computed as a solution to optimal recombination problem
(see e.g., [1, 5, 15]). It was shown in [10] that for some well-known crossover operators and
simple fitness functions condition (4) holds with ε0 = 1/2.

2 THE MAIN RESULT

In this section, we give a generalization of Non-Elitist Genetic Algorithm analysis, carried
out in [13], adapting it to different selection operators and making it applicable to the GAs
with multistart, which allows us to deal with both feasible and infeasible solutions.

Suppose that for some m there is an ordered partition of X into subsets A0, . . . , Am+1,
called levels [10]. Level A0 may be an empty set. Level Am+1 will be the target level in
subsequent analysis. The target level may be chosen as the set of solutions with maximal
fitness or the set of local optima, or the set of ρ-approximation solutions for some approxima-
tion factor ρ > 1 (a feasible solution y to a maximization problem is called ρ-approximation
solution if it satisfies the inequality F ∗/F (y) ≤ ρ). A well-known example of partition is the
canonical partition, where A0 = ∅ and each level Aj, j ∈ [m + 1] regroups solutions having
the same fitness value (see e.g. [11, 30]). In what follows, level A0 may be used to encompass
the set of infeasible solutions.

In this paper, we will often use values which are independent of an instance of problem (1)
and of a levels partition, but completely determined by the GA outline and its operators.
Such values will be called constants. The same applies to the constants in O(·) notation. It
will be convenient to use the symbol Hj := ∪m+1

i=j Ai for the union of all levels starting from
level j, j ∈ [m + 1]. The symbol e in what follows denotes the base of the natural logarithm.

Extending the notation from [10, 25], we will define the selective pressure β(0, P ) of a
selection operator Sel(P ) as the probability of selecting an individual that belongs to the
highest level occupied by the individuals of P .



Theorem 1 Given a partition A0, . . . , Am+1 of X , let there exist parameters s∗, p1, ε and β0

from (0, 1], such that for any j ∈ [m]:

(C1) Pr(Mut(x) ∈ Hj+1) ≥ s∗ for any x ∈ Aj,

(C2) Pr (xi,0 ∈ H1 for some i ∈ [λ]) ≥ p1,

(C3) β(0, P ) ≥ β0 for any P ∈ (X\Am+1)
λ,

(C4) λ ≥ 2(1+ln m)
s∗εβ0(2−β0)

,

(C5) for any (x, y) ∈ (Hj ×X ) ∪ (X ×Hj)

ε ≤

 Pr
(
Cross(x, y) ∈ Hj

)
, in case of r = 1,

Pr
(
Cross(x, y) ∈ (Hj ×X ) ∪ (X ×Hj)

)
, in case of r = 2.

Then with probability not less than p1/e at least one of the populations P 0, P 1, . . . , Pm contains
an individual from Am+1.

Let us informally describe the conditions of the theorem. Condition (C1) requires that
for each level j, there is a lower bound s∗ on the “upgrade” probability from level j. Con-
dition (C2) ensures that at least one individual of the initial population is above level 0
with probability not less than p1. Condition (C3) requires that the selective pressure induced
by the selection mechanism is sufficiently high. Condition (C4) requires that the population
size λ is sufficiently large. Condition (C5) is a level-based analog of inequalities (3) and (4).
This condition follows from (3) or (4) with ε = ε0 in the case of the canonical partition.

Proof of Theorem 1. For any t = 0, 1, . . . let the event Et+1
i , i ∈ [λ/2], consist in

fulfilling of the following three conditions when the i-th pair of offspring is computed:

1. At least one of the two parents is chosen from the highest level Aj to which the indi-
viduals of population P t belong.

2. When the crossover operator is applied, at least one of its outputs belongs to Hj. W.l.o.g.
we assume that this output is x.

3. The mutation operator applied to x produces a genotype in Hj+1.

Let p denote the probability of the union of events Et+1
i , i ∈ [λ/2]. In what follows, we

will construct a lower bound ` ≤ p, which holds for any population P t. According to the
outline of GA, Pr(Et+1

1 ) = . . . = Pr(Et+1
λ/2 ). Let us denote this probability by q. Note that q is

bounded from below by s∗ε(1− (1−β0)
2) = s∗εβ0(2−β0). Given a population P t, the events

Et+1
j , j = 1, . . . , λ/2, are independent, so p ≥ 1− (1− q)λ/2 ≥ 1− e−qλ/2. In what follows we

shall use the fact that condition (C4) implies

λ ≥ 2

s∗εβ0(2− β0)
≥ 2/q. (5)



To bound probability p from below, let us first note that for any z ∈ [0, 1] holds

1− z

e
≥ e−z. (6)

Assume z = e−qλ/2+1. Then in view of inequality (5), z ≤ 1, and consequently, we get

p ≥ exp
{
−e1−qλ/2

}
≥ exp

{
−e1−s∗εβ0(2−β0)λ/2

}
. (7)

We will use the right-hand side expression of (7) as the lower bound ` for p.
For any t = 1, 2, . . . let us define the event Et := Et

1 + . . . + Et
λ/2. Note that event Et

captures some of the possible scenarios of “upgrading” the best individuals of the current
population to the next level. Besides that, let E0 denote the event that xi,0 ∈ H1 for some
i ∈ [λ]. Then the probability to reach the target level Am+1 in a series of at most m iterations
is lower bounded by Pr(E0& . . . &Em) and

Pr(E0& . . . &Em) = Pr(E0)
m−1∏
t=0

Pr(Et+1|E0& . . . &Et) ≥ p1`
m. (8)

in view of condition (C2). Now using condition (C4), we get:

`m = exp
{
−me1−s∗εβ0(2−β0)λ/2

}
≥ exp

{
−me− ln m

}
= 1/e.

Q.E.D.

An event of downgrading mutation of a genotype x may be defined in terms of levels
partition as Mut(x) 6∈ Hj, where j is the level the individual x belongs to. Unlike the results
from [10, 11], Theorem 1 is applicable to the GAs where the probability of non-downgrading
mutation may tend to zero as the problem size grows. Examples of such operators may be
found in highly competitive GAs for Maximum Independent Set Problem and Set Covering
Problem [1, 7] and many other GAs in the literature on operations research. Note that in
case |Am+1| = 1, given an optimal genotype x ∈ Am+1, the bitwise mutation with a constant
mutation rate (as used in [1]) causes non-downgrading mutations only with probability (1−
pm)n = o(1) and the mutation operator that inverts mf bits, where mf > 0 is a given
parameter [7], has zero probability of non-downgrading mutations.

3 LOWER BOUNDS FOR SELECTION PRESSURE

The following two propositions may be applied to check condition (C3) in Theorem 1.
Proposition 1 Let levels A1, . . . , Am satisfy the monotonicity condition

f(x) < f(y) for any x ∈ Aj−1, y ∈ Aj, j = 2, . . . ,m. (9)

Then
(i) k-tournament selection with k ≥ αλ, where the constant α > 0, satisfies condition (C3)

with β0 = 1− e−α.
(ii) (µ, λ)-selection with a constant parameter µ ≤ λ satisfies condition (C3) where

β0 = 1/µ.



Proof. In the case of k-tournament selection β(0, P ) ≥ 1 − (1− 1/λ)k and
(1 − 1/λ)k ≤ (1 − 1/λ)αλ ≤ e−α, so part (i) follows. Part (ii) follows from the defini-
tion of (µ, λ)-selection immediately. Q.E.D.

The operator of proportionate selection does not have a tunable parameter that allows to
set its selection pressure. However such a parameter (let it be ν) may be introduced into the
fitness function by assuming that f(x) = F (x)ν for any x ∈ Sol. The proof of the following
proposition is similar to that of Lemma 8 in [25]. Here and below Z+ denotes the set of
non-negative integers.

Proposition 2 Let the levels A1, . . . , Am satisfy the monotonicity condition (9), F : Sol →
Z+ and the fitness function is of the form f(x) = F (x)ν, where ν > max(0, ln(αλ)F ∗) for
some α > 0. Then the proportional selection satisfies condition (C3) with β0 = 1/(1 + α−1).

Proof. Let F ν
0 be the maximal fitness value in population P and let k denote the number of

individuals in P with fitness F ν
0 . The probability to choose one of the fittest individuals is

lower bounded as follows

β(0, P ) ≥ kF ν
0

(λ− k)(F0 − 1)ν + kF ν
0

≥ k

λ(1− 1/F0)ν + k
≥ k

1/α + k
≥ 1

1/α + 1
,

since (1− 1/F0)
ν ≤ (1− 1/F ∗)ν ≤ e−ν/F ∗ ≤ 1/(αλ). Q.E.D.

Proposition 2 requires the fitness function to scale very fast as the objective function
grows. Scaling of objective function might be unavoidable in the case of proportional se-
lection. Even for the simple benchmark fitness function OneMax :=

∑n
i=1 xi, P. Oliveto

and C. Witt show [28] that in the case of proportional selection, GA with high probability
makes exponential number of iterations until the optimum is visited. The need for scaling the
fitness function is also acknowledged in practical use of Canonical GA (see e.g. [17], where a
dynamical mechanism for fitness scaling was proposed).

4 UPPER BOUNDS ON EXPECTED HITTING

TIME OF TARGET SUBSET

Let T denote the random variable, equal to the number of tentative solutions evaluated
until some element of the current population is sampled from Am+1 for the first time. In
the case when Am+1 is the set of optimal solutions, T is usually called the runtime of an
evolutionary algorithm.
Corollary 1 Suppose that conditions (C1)-(C5) of Theorem 1 hold and A0 = ∅. Then, for
the GA we have E[T ] ≤ emλ.

Proof. Consider a sequence of series of the GA iterations, where the length of each series
is m iterations. Suppose, Di, i = 1, 2, . . . , denotes an event of absence of solutions from Am+1

in the population throughout the i-th series. The probability of each event Di, i = 1, 2, . . . , is
at most 1− 1/e according to Theorem 1. Analogously to bound (8), we obtain the inequality
Pr(D1& . . . &Di) ≤ (1− 1/e)i.



Let Y denote the random variable equal to the number of the first run when a solution
form Am+1 was obtained. By the properties of expectation (see e.g. [16]),

E[Y ] =
∞∑
i=0

Pr(Y > i) = 1 +
∞∑
i=1

Pr(D1& . . . &Di) ≤ 1 +
∞∑
i=1

(1− 1/e)i = e.

Consequently, the average number of iterations until an element of the target subset is first
obtained is at most em. Q.E.D.

Assuming λ =
⌈

2(1+ln(m))
s∗εβ0(2−β0)

⌉
and constant β0 and ε, Corollary 1 implies E[T ] ≤

cm ln(m)/s∗, where c > 0 is a constant. In the special case where r = 1 and the probability of
non-downgrading mutation Pr(Mut(x) ∈ Hj | x ∈ Aj), j ∈ [m] is lower bounded by a positive
constant, the result from [10] gives an upper bound E[T ] ≤ c′m (ln(m/s∗) ln ln(m/s∗) + 1/s∗)
with some positive constant c′. The latter bound is less demanding to selection pressure and
it is asymptotically tighter than the bound E[T ] ≤ cm ln(m)/s∗ e.g. when s∗ ≤ 1/m.

Note that the assumption A0 = ∅ in Corollary 1 can not be dismissed. Indeed, suppose
that A0 6= ∅, and consider a GA where the mutation operator has the following proper-
ties. On the one hand, it never outputs an offspring in H1, given an input from A0. On
the other hand, given a genotype x ∈ H1, the result of mutation is in A0 with a probabil-
ity at least c, where c > 0. Finally, assume that the initialization procedure produces no
genotypes from Am+1 in population P 0 and the crossover makes no changes to the parent
genotypes. Now all conditions of Corollary 1 can be satisfied but with a positive probability
of at least cλ the whole population P 1 consists of solutions from A0, and subject to this event
all populations P 1, P 2, . . . contain no solutions from H1. Therefore, E[T ] is unbounded.

As an example of the usage of Corollary 1 we consider the GA with tournament se-
lection applied to the family of unconstrained optimization problems with objective func-
tion LeadingOnes, which is frequently used in the analysis of evolutionary algorithms. The
objective function LeadingOnes : {0, 1}n → Z+ is defined as

LeadingOnes(x) =
n∑

i=1

i∏
j=1

xj

i.e. the optimal solution is x∗ = (1, . . . , 1).
Let us use the canonical levels partition: Aj = {x | F (x) = j − 1}, j ∈ [n + 1], m = n.

Assume that the bitwise mutation operator has the mutation rate pm = 1/n. To move from
level Aj to level Aj+1 under mutation, it suffices to modify the first zero bit and not to modify
the rest of the bits. So we can use s∗ = (1/n)(1− 1/n)n−1 = Ω(1/n). Suppose that in the
single-point crossover pc = 1. Then in the case of LeadingOnes , as it was shown in [10],
the constant ε = 1/2 satisfies condition (C5). Assuming the tournament size k = Θ(λ),
Proposition 1 ensures satisfaction of condition (C3) with a positive constant β0. Application
of Corollary 1 to the GA with r = 1 or r = 2 and λ = Θ(n ln(n)), satisfying (C4), gives the
upper bound E[T ] = O(n2 ln(n)).

The GA runtime analysis from [10] with r = 1 implies that E[T ] = O(n2 + nλ log λ),
provided that λ ≥ C1 log n and k ≥ C2 for some specific constants C1, C2 > 0. This yields the
runtime bound E[T ] = O(n2) in the case of λ = Θ(log n), but in the case of λ = Θ(n log n)



the analysis from [10] yields a greater runtime bound E[T ] = O(n2 ln(n)2). Thus for relatively
small population sizes the runtime bound from [10] is preferable, while the new bound is
preferable for sufficiently large population sizes.

Analogously to Corollary 1 we obtain

Corollary 2 Let the GA with multistart use the termination condition with tmax = m. Then
E[T ] ≤ emλ/p1 holds under conditions (C1)-(C5).

As an illustrative example for Corollary 2, we consider Canonical GA on the family of
instances of Set Cover Problem proposed by E.Balas in [4]. In general, the set cover prob-
lem (SCP) is formulated as follows. Given: M = {1, ...,m} and a set of subsets Mj ⊆ M ,
j ∈ [n]. A subset J ⊆ [n] is called a cover if ∪j∈JMj = M. The goal is to find a cover of
minimum cardinality. In what follows we denote by Ni the set of indices of the subsets that
cover an element i, i. e. Ni = {j : i ∈ Mj} for any i.

In the family B(n, p) of SCPs introduced by E. Balas in [4], it is assumed that m = Cp−1
n

and the set {N1, N2, ..., Nm} consists of all (n − p + 1)-element subsets of [n]. Thus J ⊆ [n]
is an optimal cover iff |J | = p.

Family B(n, p) is known to have a large fractional cover [4], which implies that these SCPs
are likely to be hard for integer programming methods. In particular, it was shown in [34] that
problems from this class are hard to solve by the L-class enumeration method [22]. When n is
even and p = n/2, the L-class enumeration method needs an exponential number of iterations
in n. In what follows, we analyze GA in this special case.

In the binary encoding of solutions we assume that each bit xj ∈ {0, 1}, j ∈ [n], indicates
whether j belongs to the encoded set or not, i.e. J(x) := {j ∈ [n] : xj = 1}. If J(x) is a
cover, then we assume F (x) = n− |J(x)|+ 1, otherwise, we put F (x) = 0 as a penalty.

Consider Canonical GA with multistart and scaled fitness function f(x) = F (x)ν , the
termination condition where tmax = n/2, a constant parameter pc < 1, and the mutation
rate pm = 1/n.

Assume that A0 is the set of all infeasible solutions and the rest of the levels A1, . . . , Am+1

are defined according to the canonical partition on Sol, where m = n/2. In the case of p = n/2,
with probability 1/2, a random individual of P 0 is feasible and there exists a constant p1 > 0
satisfying condition (C2). The constant ε = 1 − pc satisfies condition (C5). The probability
that, under mutation, a genotype from level Aj produces an element of Hj+1, j ∈ [m] in the
case of problems of family B(n, p) is lower bounded by s∗ = Ω(1). Choosing ν > ln(αλ)n/2
with constant α > 0 we ensure condition (C3), according to Proposition 2. Finally, appro-
priate λ = Θ(ln(n)), satisfies condition (C4). Therefore, Corollary 2 implies that an optimal
solution is attained for the first time after E[T ] = O (n ln(n)) tentative solutions in expecta-
tion.

5 APPLICATIONS TO LOCAL SEARCH

PROBLEMS

In this section, GAs are compared to the local search method. In order to keep track of
running times w.r.t. the length of problem instance encoding, here the combinatorial opti-
mization problems are viewed under the technical assumptions of the class of NP optimization



problems (see e.g. [3]). Let {0, 1}∗ denote the set of all strings with symbols from {0, 1} and
the arbitrary string length. For a string S ∈ {0, 1}∗, the symbol |S| will denote its length.
In what follows, N denotes the set of positive integers and given a string S ∈ {0, 1}∗, the
symbol |S| denotes the length of the string S. To denote the set of polynomially bounded
functions we define Poly as the class of functions from {0, 1}∗ to N bounded above by a
polynomial in |I|, where I ∈ {0, 1}∗.
Definition 1 An NP optimization problem Π is a triple Π = (Inst, Sol(I), FI), where Inst ⊆
{0, 1}∗ is the set of instances of Π and:

1. The relation I ∈ Inst is computable in polynomial time.
2. Given an instance I ∈ Inst, Sol(I) ⊆ {0, 1}n(I) is the set of feasible solutions of I,

where n(I) stands for the dimension of the search space XI := {0, 1}n(I). Given I ∈ Inst
and x ∈ {0, 1}n(I), the decision whether x ∈ Sol(I) may be done in polynomial time, and
n(·) ∈ Poly.

3. Given an instance I ∈ Inst, FI : Sol(I) → N is the objective function (computable in
polynomial time) to be maximized if Π is an NP maximization problem or to be minimized if
Π is an NP minimization problem.

The symbol of problem instance I may often be skipped in the notation, when it is clear
what instance I is meant. A combinatorial optimization problem Π = (Inst, Sol(I), FI) is
called polynomially bounded, if there exists a polynomial in |I|, which bounds the objective
values FI(x), x ∈ Sol(I) from above.

Let a neighborhood N (y) ⊆ Sol be defined for every y ∈ Sol. The mapping N : Sol → 2Sol

is called the neighborhood mapping. The family {N (y) : y ∈ Sol} is called the neighborhoods
system. One of the standard neighborhoods systems on Sol = {0, 1}n is Hamming neigh-
borhoods system: N (y) = {x | d(x, y) ≤ R}, y ∈ Sol, where the radius R is a constant
and d(·, ·) denotes the Hamming distance. If the inequality F (y) ≤ F (x) holds for all neigh-
bors y ∈ N (x) of a solution x ∈ Sol, then x is called a local optimum w.r.t. N . In what
follows, the set of all local optima is denoted by LO.

A local search method starts from some feasible solution y0. Each iteration of the algorithm
consists in moving from the current solution to a new solution in its neighborhood, such that
the value of objective function is increased. The way to choose an improving neighbor, if
there are several of them, will not matter in this paper. The algorithm continues until a local
optimum is reached.

Suppose that some neighborhood system N is defined for problem (1) and s is the lower
bound for probability that the mutation operator transforms a given solution x into a specific
neighbor y ∈ N (x), i.e.

s ≤ Pr(Mut(x) = y), x ∈ Sol, y ∈ N (x). (10)

Many well-known combinatorial optimization problems, such as Maximum Satisfiability
Problem, Maximum Cut Problem, and Ising Spin Glass Model [6] have a set of feasible
solutions equal to the whole search space Sol ≡ X . The following two corollaries apply to the
problems with such a property.

Let m be the number of different values of the fitness function f1 < . . . < fm on X\LO,
i.e. m = |{g : g = f(x), x ∈ X\LO}|. Then, starting from any initial solution, the local



search method attains a local optimum within at most m iterations. Let us use a modification
of the canonical levels partition, grouping all local optima into the target subset Am+1:

Aj := {x ∈ X |f(x) = fj}\LO, j ∈ [m], (11)

Am+1 := LO. (12)

Application of Corollary 1 and Proposition 1 with levels partition (11), (12) gives

Corollary 3 Suppose that Sol ≡ X , a constant ε0 > 0 satisfies inequality (3) or (4), s > 0
satisfies inequality (10) and the GA uses a k-tournament selection with k > αλ or (µ, λ)-
selection, where α and µ are constants. Then, there exists a constant c > 0 such that a
GA with population size λ ≥ c ln (m) /s first visits a local optimum of problem (1) after at
most eλm tentative solutions in expectation.

Therefore, with an appropriate population size, e.g. λ = dc ln(m)/se, under conditions
of Corollary 3, a local optimum of problem (1) is visited for the first time after evaluation
of at most em ln(m)/s tentative solutions on average. This fact in the special case of the
tournament selection and r = 2 was proved in [13]).

In order to consider bitwise mutation in more detail, we will use the following definition
from [2]. A neighborhood mapping N is called K-bounded, if for any y ∈ Sol and x ∈ N (y)
holds d(x, y) ≤ K, where K is a constant.

The bitwise mutation operator Mut∗ outputs a string x, given a string y, with probability
p

d(x,y)
m (1− pm)n−d(x,y). Note that probability pj

m(1− pm)n−j, as a function of pm, pm ∈ [0, 1],
attains its minimum at pm = j/n. The following proposition from [13] gives a lower bound for
the probability Pr{Mut∗(y) = x}, which is valid for any x ∈ N (y), assuming that pm = K/n.
We reproduce this proposition here with a proof for the sake of completeness.

Proposition 3 Suppose that the neighborhood mapping N is K-bounded, K ≤ n/2 and pm =
K/n. Then, for any y ∈ Sol and any x ∈ N (y) holds Pr{Mut∗(y) = x} ≥ (K/en)K .

Proof. For any y ∈ Sol and x ∈ N (y) holds

Pr{Mut∗(y) = x} =

(
K

n

)d(x,y) (
1− K

n

)n−d(x,y)

≥
(

K

n

)K (
1− K

n

)n−K

,

since pm = K/n ≤ 1/2. Now ∂
∂n

(1 − K/n)n−K < 0 for n > K, and (1 − K/n)n−K → 1/eK

as n →∞. Therefore (1−K/n)n−K ≥ 1/eK . Q.E.D.

Application of Corollary 1 and Propositions 2 and 3 to Canonical GA yields

Corollary 4 Suppose that Sol ≡ X , F : Sol → Z+, a neighborhood mapping N is K-bounded,
pc < 1 is a constant, pm = K/n and the fitness function has a form f(x) = F (x)ν, where ν >
ln(αλ)F ∗. Then, there exists such constant c > 0 that Canonical GA with λ ≥ c ln (F ∗) /nK

visits a local optimum to problem (1) for the first time after at most eF ∗λ tentative solutions
in expectation.



Corollary 4 implies that in the case of polynomially bounded unconstrained NP optimiza-
tion problem, Canonical GA given appropriate choice of parameters finds a local optimum in
Hamming neighborhoods system within expected polynomial time.

Let us consider a GA with multistart applied to an NP optimization problem, i.e. in
general Sol may be a proper subset of X . Corollary 2 and Proposition 1 yield

Corollary 5 Suppose that inequality (3) or (4) holds for some constant ε0 > 0, bound s
satisfies inequality (10) and condition (C2) is satisfied for some constant p1 > 0. Besides, as-
sume that GA with multistart uses a termination condition tmax = m and one of the following
selection operators:

• k-tournament selection with k > αλ where α > 0 is a constant or

• (µ, λ)-selection with a constant µ or

• proportional selection in the case of F : Sol → Z+ and the fitness function is of the
form f(x) = F (x)ν where ν > ln(αλ)F ∗ and α > 0 is a constant.

Then, there exists such positive constant c that with population size λ ≥ c ln (m) /s a local
optimum is first reached by the GA with multistart after evaluation of at most emλ tentative
solutions in expectation.

Corollary 5 is formulated for the GA with multistart rather than single-run GA because,
in general, this result does not hold for the single-run GA. Indeed, suppose Sol 6= X and
consider a GA where the mutation operator has the following properties. On one hand Mut
never outputs a feasible offspring, given an infeasible input. On the other hand, given a feasible
genotype x, Mut(x) is infeasible with a positive probability, lower bounded by a constant ε ∈
(0, 1]. Finally, assume that the initialization procedure for population P 0 produces only
feasible solutions, but none of them is locally optimal. Now all conditions of Corollary 5
are satisfied, but with a positive probability of at least ελ the whole population P 1 consists
of infeasible solutions, and subject to this event all populations P 1, P 2, . . . are infeasible.
Therefore, if the GA is run without restarts, the expected number of iterations until the first
improvement of the best found solution is unbounded, and the expected hitting time of a local
optimum is unbounded as well. The need for restarting the GA was overlooked in the first
publication of a result analogous to Corollary 5 in [13]. The GA considered in [13] should be
replaced by the GA with multistart using the termination condition tmax = m to make the
results in [13] correct in the case of Sol 6= X . This correction is implemented in [14].

Corollary 5 may be used to estimate the capacities of GAs to find efficiently the solu-
tions with guaranteed approximation ratio if all local optima of a problem have a known
approximation ratio.

Definition 2 [2] A polynomially bounded NP optimization problem Π belongs to the class of
Guaranteed Local Optima (GLO) problems, if the following two conditions hold:

1) At least one feasible solution yI ∈ Sol is efficiently computable for every instance I ∈
Inst;

2) A K-bounded neighborhood mapping NI exists, such that for every instance I, any local
optimum of I with respect to NI has a constant guaranteed approximation ratio.



The class GLO contains such well-known NP optimization problems as the Maximum
Staisfiablity and the Maximum Cut problems, besides that, on graphs with bounded vertex
degree, the Independent Set problem, the Dominating Set problem, and the Vertex Cover
problem also belong to GLO [2].

If a problem Π belongs to GLO and n is sufficiently large, then in view of Proposition 3,
for any x ∈ Sol and y ∈ N (x), the bitwise mutation operator with pm = K/n satisfies the
condition Pr{Mut∗(x) = y}−1 ∈ Poly. Therefore, Corollary 5 implies the following

Corollary 6 If Π ∈ GLO and GA with multistart uses

1. a polynomial-time initialization procedure that produces a population with at least one
feasible solution with probability p1 such that 1/p1 ∈ Poly,

2. the tournament selection or the (µ, λ)-selection,

3. a crossover operator satisfying (3) or (4) for some positive constant ε0 and

4. the bitwise mutation,

then given suitable values of parameters λ, pm and k or µ, GA with multistart visits a solution
with a constant guaranteed approximation ratio within expected polynomially bounded time.

6 CONCLUSIONS

The obtained bounds on the first hitting times for sets of global or local optima are
extending some previously known bounds of such kind for genetic algorithms and may be
applied to standard benchmarks and genetic algorithms as well as some stat-of-the-art genetic
algorithms for combinatorial optimization problems. Considering the selection operators with
very high selection pressure, we obtain the bounds that apply even in the cases where the
probability of non-downgrading is not lower-bounded by a positive constant.

The obtained results imply that if a problem is polynomially bounded and the feasible
solutions are present in the initial population, then a local optimum in a Hamming neighbor-
hood system is computable in expected polynomial time by standard GAs with multistart.
Besides, given suitable parameters and initialization procedure, a non-elitist GA with tourna-
ment selection or (µ, λ)-selection approximates any problem from GLO class within a constant
ratio in polynomial time in expectation.

If an NP optimization problem is polynomially bounded, then Canonical Genetic
Algorithm with appropriate parameters tuning and fitness scaling finds a local optimum
within expected polynomial time for many standard neighborhood systems.
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