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Abstract
In this chapter, we consider a problem of constructing trading hubs in the

structure of the electricity wholesale markets. The nodes of a trading hub
are used to calculate a reference price that can be employed by the market
participants for different types of hedging. The need for such a reference price
is due to considerable variability of energy prices at different nodes of the
electricity grid at different periods of time. The hubs construction is viewed
as a mathematical programming problem here. We discuss its connections
with clustering problems, consider the heuristic algorithms of solution and
indicate some complexity issues. The performance of algorithms is illustrated
on the real-life data.
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1 Introduction

In the modern electricity spot markets the price is not unique, it varies from
one node of the power grid to another and it also depends on time. The market
participants in this situation are interested in one or several reference prices
to hedge the price risks and to settle the forward contracts. These reference
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prices can be calculated by taking an average of the energy prices in a number
of nodes with the most typical price dynamics in the given region. A set of
such nodes with a specific formula for computing the average is called a trading
hub. For short, in what follows, we will use the term hub.

Large electricity markets, such as PJM Interconnection (USA), Midwest
ISO (USA), United Energy System (Russia) and others, provide a number
of hubs. In this case, each buyer or seller prefers the hub approximating the
most closely the nodal price of this participant. The hubs in electricity mar-
kets have some similarity with the hubs in oil and gas markets, but each of
these commodities has unique features which require relevant trading instru-
ments [2].

Successfully functioning hubs contribute to emergence of derivatives, the
financial instruments (contracts) that do not represent ownership rights in
any asset but, rather, derive their value from the value of the underlying
commodity. The derivatives may serve as efficient tools for isolating financial
risk and hedging to reduce exposure to risk [6]. The hubs also contribute to the
success of electronic trading systems providing the aggregated data on price
dynamics over the system. In the case of electricity markets, the hub price is
usually defined as a simple or a weighted average of the nodal prices over the
nodes comprising the hub. Due to this reason the hub price is less volatile than
the prices at individual nodes. This feature is of particular importance because
the liquidity of futures contracts depends significantly on predictability of the
price of the underlying commodity (liquidity here means large volume of trade
operations and easiness to find a contracting party).

To define a hub, it is sufficient to select a set of nodes and the weights to
average the prices over these nodes. In the present chapter, we will consider
this task as an optimization problem, keeping in mind that usually the opti-
mization is just one of the steps in the decision making process of designing a
hub. This process in practice involves a lot of negotiations between the market
participants and administration, so that the human expertise often plays an
essential role. In some cases it has been proposed to define the hubs without
any optimization, e.g. the hubs may consist exclusively of generation nodes,
grouped on the regional basis, with weights equal to the historical volume
of the generation or the installed capacity, but such approach is not always
applicable. One of the promising statistical approaches to hubs construction
is based on the Principal Component Analysis [4] but detailed presentation
of this method is outside of the scope of this chapter.

The trading hubs construction problems considered below have similar
terminology to the hubs location problems [3], however, these classes of prob-
lems are different. The hubs location problems are mainly motivated by the
applications where certain elements of a system are actually connected via
hubs, while in our case the trading hubs are purely virtual constructions and
no physical connections are associated with them. Also, in the hubs location
problems there is no equivalent of the hub price, which plays an important
role in our case.
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The remaining part of the chapter is organized as follows. In Section 2, we
discuss the motivation for the Hubs Construction Problems, the ways of using
the hubs in the electricity markets and the properties demanded from them.
Here we also provide a brief review of hubs implemented in some electricity
markets. The criteria and constraints, formulated in Section 2, are converted
into mathematical programming problems in Section 3 and some basic prop-
erties of these problems are discussed here. The Hub Construction Problems
often turn out to be large scale non-convex optimization problems, which
makes it relevant to look for appropriate heuristics to solve them. Some of
these heuristics are presented and evaluated in Sections 4 and 5. Section 6
contains the conclusions.

2 Hedging in the Electricity Markets and Hubs Usage

2.1 Price Volatility

The trading hubs construction problems appear in the context of the modern
electricity markets based on the Locational Marginal Pricing (LMP). LMP is
a mechanism for using market-based pricing for managing transmission con-
gestion and thermal losses in the electricity grid. The energy prices at different
locations vary due to transmission congestion, which prevents relatively low-
price generation from meeting the loads beyond a certain neighborhood. If not
the congestion and transmission losses, the energy price would be uniform all
over transmission grid. The market clearing LMP price is determined by an
Independent System Operator (ISO) on the basis of solution to a mathematical
programming problem, known as the economic dispatch problem. The LMP
price at any node is taken to be a Lagrange multiplier of the power flow bal-
ance constraint associated with this node. The details of this approach can
be found, e.g. in [5, 16, 26, 30]. Computation of LMP prices requires that all
market players submit to an ISO their bids for generation and load. If the
price and dispatch schedule computation takes place a day before dispatch,
this is called the Day-Ahead Market. Additionally, an ISO may support other
similar markets scheduled at later time, e.g. an Hour-Ahead Market and the
Real-Time Market.

Due to the difficulty to store electric energy for significant time and due
to high variability of demand for this good during a day, the LMP price of
electricity is highly volatile. An example of price behavior can be seen in Fig. 1.
This figure contains the Real-Time data of 13 Feb 2007 obtained from the web
site of PJM system operator http://www.pjm.com. The LMP prices of many
energy markets have a strong dependence on the geographical location and
the grid topology [27]. This is why in many cases it is important to establish
regional hubs, defining reference prices that closely approximate the cost of
energy in the area and may be used for hedging (compare the graphs of PJM
Eastern hub and node CARKSVI in Fig. 1).



4 P. A. Borisovsky et al.

Fig. 1. Real-Time LMP prices at two nodes and two hubs in PJM Interconnection
as of 13 Feb 2007

2.2 Basic Hedging Strategies and Hubs Usage

Hedging by Means of Futures Contracts.

Deliveries in the futures market are organized in physical or financial form.
The first, physical delivery assumes that the seller at the maturity must hold
the specified in the contract quantity of good at the specified warehouse. The
seller then sends delivery call to the buyer who transfers money at the price
specified in the contract and the seller transfers the right of possession to the
buyer. The essence of the contract is its price. Fixing the price when signing
the contract allows both the buyer and the seller to secure their cash flow for
the future.

The seller of the contract can either deliver the good to the warehouse or
buy the good in the warehouse from an agent (third party) at the spot price,
while receiving from the buyer the price set in the contract. This observation
motivates the second, financial form of delivery.

The financial form of delivery implies that entering into a futures contract
at price Cf would yield for the seller the amount of money Ms depending on
the spot price C:

Ms = Cf − C . (1)

For the buyer, the result Mb is just the opposite:
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Mb = C − Cf . (2)

So, financially the futures contract results for the seller in:

• receiving the difference between the contract and the spot prices when the
contract price is higher than the spot price;

• paying the difference between the spot and the contract prices when the
contract price is lower than the spot price.

Since electricity can not be stored, the physical settlement would imply
that the seller physically delivers electricity at the rate specified in the contract
while the buyer transfers money to the seller’s account at the specified price.
Nevertheless, in the case of electricity, the usage of common electric grid is
unavoidable and, therefore, the physical delivery of electricity involves a lot
more detailed coordination of actions of all participants compared to physical
delivery of other products. For this reason, the more flexible financial form
of delivery is widely accepted in the electricity markets. The delivery period
is usually one month, the amount is 1 MWh each hour. Also, contracts of 1
week, 1 quarter and 1 year duration are traded at some markets (Nord Pool,
EEX).

Hedging by Means of Financial Transmission Rights (FTRs).

The FTRs are hedging instruments, designed for compensation of price dif-
ference between the nodes separated by congested transmission lines in the
electricity spot markets with locational marginal pricing [14, 16, 26] (e.g. Day
Ahead or Real Time markets). The FTR contracts can be defined from any
node to any other node. If the hub price is defined as the simple average or a
weighted average of a set of nodal prices, then the FTRs may be defined be-
tween any node and a hub, or between two hubs. The market of node-to-node
FTRs may be quite illiquid due to a large number of nodes in the system.
Liquidity can be increased by usage of hubs because an FTR from node 1 to
node 2 is decomposable into two FTRs: from node 1 to hub and from hub to
node 2 [16]. Traders may obtain the FTRs to cover the basis risk between their
own node and the hub or between two different hubs. If the nodal price of a
participant is sufficiently close to the price of some hub, the basis risk from
node to hub may be quite small with most of the basis risk being between
hubs.

In some markets, organized according with the Standard Market De-
sign principles, the rules of the Day-Ahead market allow to post virtual de-
mand/supply bids, i.e. the bids for buying or selling the energy, not supported
by real generation capacity or load (e.g. New England Pool in the USA). In
such a case, a significant amount of virtual demand/supply may be concen-
trated in a hub and the latter can be viewed as a trading point with risk-
hedging potential [24].

The spot price in the electricity markets is significantly volatile even on the
daily scale, therefore, when hubs are designed to be used for FTR transactions
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or for virtual bidding, it is important to take into account the hourly prices in
historical data. Alternatively, if the hub is designed only to be used for one-
week, one-month or annual futures, then the statistical data may be averaged
over these time periods to simplify the analysis and to design the hub more
adequate to the market tools in use.

The Hedge Ratio.

Here we describe the most widely used method of hedging by standard con-
tracts utilizing the so-called hedge ratio. This method is well-known among risk
managers and it is based on easily calculable and understandable quadratic
distance measure between the prices.

Consider a producer selling each hour 1 MWh of electricity on the spot
market at price cit, where t denotes hour and i denotes the node of the electric
grid to which the producer belongs. The value cit is a random number.

Since the producer sells 1 MWh at price cit, the amount of money M
(s)
it

he gets from the spot market in that hour is

M
(s)
it = cit . (3)

The producer is going to hedge the position in the spot market by entering into
a financially settled futures contract at price Cf . The settlement of the futures
contract is defined relatively to the spot price cHt in the hub H meaning that
according to equation (1) his participation in the futures market results in the
value

M
(f)
it = Cf − cHt (4)

per each 1 MWh of the delivery. Note that cHt is a random value as well.
Suppose the producer located in node i sells hi futures contracts (hi may

be greater or less than 1). In this case the producer receives a total amount
Mit

Mit = M
(s)
it + hiM

(f)
it = cit + hi (Cf − cHt) . (5)

For efficient hedging the producer aims to minimize the variance of
Mit [29]:

Min σ2(Mit). (6)

The only possible parameter the hedger can change is the amount h of futures
contracts that he sells to hedge a unit of sold good in the spot market. Hence,
(6) is transformed into

dσ2(Mit)
dhi

= 0. (7)

Expanding the variance of the sum and respecting that Cf is not random we
obtain

d

dhi

(
σ2(cit) + h2

i σ
2(cHt)− 2ρ(cit, cHt)hiσ(cit)σ(cHt)

)
= 0, (8)
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hiσ(cHt)− ρ(cit, cHt)σ(cit) = 0, (9)

hi = ρ(cit, cHt)
σ(cit)
σ(cHt)

, (10)

where ρ(·, ·) denotes the correlation.
Substituting the value of hi (known as the hedge ratio) into equation (5)

and calculating its variance we have:

σ2(Mi,t) =
(
1− ρ2(cit, cHt)

)
σ2(cit), (11)

i.e. an optimal hedge ratio decreases the variance of the initial position by
factor of 1− ρ2(cit, cHt). Hence the standard criterion of selecting a good hub
for a given node would be to take the one with the maximal correlation with
the nodal price.

Unfortunately, reliable estimation of correlation and variance for a given
node and given hour is practically impossible due to volatile behavior of elec-
tricity prices [29]. One may take the historical prices data in order to calculate
the hedge ratio as discussed above, but it will be only a rough estimate.

For the futures contracts with delivery periods of one month duration, the
index t in the above relations could be replaced by the month index τ . In such
a case, if µτ denotes the set of hours belonging to month τ , instead of the
values cit one would use

ciτ =

∑
t∈µτ

citAit

∑
t∈µτ

Ait
, (12)

where Ait is the amount of electricity sold in the node i at hour t. A discussion
of positive and negative factors of averaging with time-dependent weights
Ait, as compared to the simple average, can be found in [7]. In any case,
replacement of the hourly prices by average prices over certain time periods
reduces the amount of input data for the decision support system, simplifying
the analysis. At the same time, this approach reduces the amount of useful
information at the input, e.g. the distinct behavior of on-peak and off-peak
prices can not be seen after such an aggregation. With this in mind, we will
usually talk about time t indexed in hours, unless otherwise is stated.

It is clear that a large number of hubs would allow to find an appropriate
hub for any node. However, large number of futures can not be liquid simul-
taneously. At most of the exchanges, the number of different liquid futures is
small. Usually there exists one lead contract attracting most of liquidity and
3-5 supplementary contracts. Unfortunately, it is difficult to evaluate quan-
titatively the liquidity of each hub in a given collection of hubs in advance,
because this property depends on many organizational factors and strategies
of market participants. Hence, the upper bound on the number of hubs is
often used as a simplified liquidity requirement.

The necessary number of hubs m may be evaluated by means of the Princi-
pal Component Analysis [4]. Usage of this method in hubs design is established
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on the basis of assumption that each node i is hedging in all existing hubs with
the hedge ratios minimizing (6) w.r.t. each hub. Each eigenvector (principal
component) of the sample correlation matrix between all nodal prices can,
theoretically, define a hub. The greater its eigenvalue, the greater amount of
the total variance of the nodal prices it carries. A decision about the num-
ber of principal components, that are practically significant, can be made e.g.
using Kaiser’s or Cattell’s criteria [35].

Another constraint, which is also connected with hub liquidity is a lower
bound on the number of nodes in a hub, when the hub price is computed
as the simple average of the nodal prices. This constraint ensures stability of
the hub price under minor modifications of the grid (permanent exclusion or
temporary outage of nodes due to planned repair or unexpected breakdown).
In general, taking average over a larger number of nodes usually decreases
the variance of hub price, which makes it more predictable for the traders,
increasing the liquidity. The lower bound on the number of hub nodes, equal
to 50 or 100 appears to be sufficient (see the examples in Section 2.3).

Note that when the hub price is computed as a weighted average, the nodal
weight may be chosen arbitrary close to zero, even though, formally, this node
is used for calculation of the hub price. This makes it meaningless to impose
the lower bound on the number of nodes when the hub price is computed
as a weighted average. There are some ways to modify this condition for the
weighted case as well, but for simplicity we will consider only the unweighted
case here.

To sum up, informally, the Hubs Construction Problem consists in finding
a sufficiently small number of large hubs which would explain as much as
possible the price dynamics in most of the nodes of the electric grid. The
ways to formally state this problem will be addressed in Section 3.

2.3 Hubs Design of Some Existing Markets

In this section, we briefly survey several cases of hubs design in large-scale
electricity markets based on locational marginal pricing.

Midwest ISO

The system operator Midwest ISO manages one of the largest electricity mar-
kets in the USA. The grid of Midwest ISO consists of more than 30 000 nodes
and the LMPs are computed for about 1 500 nodes. The overall installed
capacity of Midwest ISO generation is near 150 GW. The electricity market
is organized according to the Standard Market Design principles [33]. There
are 4 trading hubs in this market: Cinergy, Michigan, Illinois and Minnesota
consisting of about 330, 260, 150 and 170 nodes, respectively. These hubs were
chosen by LECG, LLC and the Midwest ISO in conjunction with the Trading
Hubs Task Force in year 2003 [10].
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One of the main requirements in the design of the Midwest ISO hubs
was that the hub price should move consistently with the prices in the corre-
sponding target region and most of locations in the target region are “close”
to the hub in terms of price difference. Also, it was required that it should be
unlikely for a significant portion of the trading hub to be lost from service.
The volatility of hub price had to be low, implying that plausible patterns of
transmission congestion and individual transmission outages should not cause
the trading hub price to substantially diverge from prices in the target region.
The trading hub definitions had to be fixed i.e. once a hub was defined, the
set of hub nodes and their weights are not changed.

In view of these requirements, the optimization model with given number
of hubs was applied (see Section 3.1 below). The input data consisted of the
nodal prices for each 2-hour period of the year in 1290 nodes. A straightfor-
ward solution of this problem by means of commercial optimization packages
was impossible because of its high dimensionality. For this reason the problem
formulation was simplified by setting the weights of all nodes equal to 1. This
simplification allowed to apply the standard statistical clustering algorithm
H-means (see Section 4 below) to form 30 clusters of nodes. Inspection of
these clusters showed several sufficiently large candidates with relatively low
distance between the hub price and the nodal prices in their target regions.
Some of the outliers were manually excluded from these clusters on the ba-
sis of the scatter plot analysis and evaluation of the experts. The subsequent
analysis consisted in comparison of the hub prices with the electricity price in
37 load area zones of major market participants to determine the cluster best
fit for each of them.

PJM Interconnection

operates one of the largest wholesale electricity markets in the world. The
overall installed capacity of Midwest ISO generation is near 160 GW, the
number of market participants is more than 350. The market structure com-
plies with the Standard Market Design. There are two actively traded hubs:
Western (near 110 nodes) and Eastern (near 240 nodes), 8 localized hubs:
AEP Gen, AEP Dayton, Chicago Gen, Chicago, Domnion, Northern Illinois,
New Jersey, Ohio and an interface hub Western Interface.

The hub price is computed as a weighted average of the real-time LMP
prices with a fixed set of the nodal weights. The largest volume of trade is con-
centrated in PJM-Western hub, due to its stability to the influence of system
constraints and its location between large load areas and areas of generation.
The PJM-Western monthly futures are traded at NYMEX stock exchange for
on-peak and off-peak hours (see http://www.nymex.com/JM desc.aspx).

To determine the composition of the PJM-Western Hub, the nodal prices
were analyzed under various historic transmission constrained conditions [25].
The standard cluster analysis tools were used to determine candidate clusters
of nodes that respond in a similar way under many different transmission
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constraints. For each of these clusters, an optimization problem was solved
to determine the node weights that minimize the distance between the hub
price and the energy price in the subregion for which the hub is targeted.
Originally, in year 1998 PJM-Western Hub consisted of nodes selected from
PEPCO, BGE, Penelec and MetEd zones. Later this hub went through some
changes, with addition of nodes from APS, ComEd, AEP, Dayton, Dominion,
and Duquesne and RECO zones.

ISO New England

system operator is responsible for New England’s bulk power generation and
transmission system with an installed capacity of 32 GW and more than
200 market participants. The market is organized according with the Stan-
dard Market Design. The power grid of ISO New England has only one hub,
NEPOOL Hub, allocated between the areas of prevailing generation at North
and West and the areas of prevailing consumption at Connecticut and North-
east Massachusetts/Boston. The hub price is the simple average of the nodal
prices at 32 nodes. The choice of these nodes was based on statistical analysis,
using simulated nodal prices [13].

Electricity Market of United Energy System of Russia

Administrator of Trade System for United Energy System of Russia operates
a wholesale electricity market with an overall installed capacity near 200 GW
and 200 market participants, more than 100 of them are generators. The Day-
Ahead Market is based on the locational marginal pricing, where the hourly
prices on electricity are computed for more than 7000 nodes. The mathemat-
ical models of the current market, which is functioning since September 2006,
and its two-sector predecessor are described in [5]. There are four hubs in the
European zone of Russia: Center-Europe, Center-West, Volga and Urals. The
other zone is located in Siberia, it has two hubs: Kuznetsk Basin and Krasno-
yarsk – see http://www.np-ats.ru. The sizes of smaller hubs are close to 50
nodes and the size of the largest hub Center-West is over 300 nodes. The hub
prices are computed as simple average of the day-ahead locational marginal
prices. All hubs consist of high voltage nodes (not less than 220 kV), which
ensures that local congestions and grid modifications do not influence the hub
price a lot. The sets of hub nodes in the European zone were chosen using
the H-means clustering algorithm with subsequent expertise. The Principal
Component Analysis, applied to the European zone indicates that the largest
eigenvalue corresponds to the average electricity price in this zone. The first
eigenvalue greatly exceeds all other eigenvalues and there are 4 other princi-
ple components of significant value, which is consistent with the number of
existing hubs.
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3 Problem Formulations

In this section, we discuss the mathematical formulations of the Hub Construc-
tion Problems, taking into account the criteria and constraints considered in
Section 2.2 above.

As it was mentioned before, the trading hubs should be constructed, taking
into account the historical data of the nodal prices, preferably, covering a
whole preceding year or several years. If the hubs are designed for monthly
futures, without separation of on-peak and off-peak futures, then the historical
data may be aggregated into one-month elementary periods. If the hubs are
also aimed to be used for different types of futures, for virtual bidding at the
Day-Ahead market or for the FTR contracts, then such time aggregation is
inappropriate. It is important that the input data represent the price dynamics
in all seasons and, if the hourly prices are not averaged over one-week or one-
month period, it is also important that the data reflects different modes of
the system: with congestions and without them, on-peak and off-peak hours,
working days and weekends. For terminological convenience, we will usually
call the elementary historical time intervals “hours” and denote them by t.
The number of elementary time intervals in the historical data will be denoted
by T .

Here we assume that the distance measure between the hub price and
the nodal price is computed as the sum of squared differences over all
hours t, t = 1, . . . , T , i.e. the squared Euclidean distance in T -dimensional
space. If appropriate, the Euclidean distance may be substituted by some
other standard metric, or by the observed variance or observed correlation
(the latter should be maximized) as it was discussed in Section 2.2. The sum
of squared differences appears to be the most widely used criterion and many
clustering methods are well suited to it.

In what follows, n will denote the number of nodes, where the LMP prices
are computed, and cit will be the LMP price in node i = 1, . . . , n at hour
t = 1, . . . , T . To allow different nodes to have different significance at differ-
ent time, the weighting factors wi,t can be introduced. One of the standard
approaches to weighting is to take the weights equal to the traded volumes
wi,t = Ai,t. Alternatively, one can assign a set of constant weights equal to the
installed capacity in the nodes or equal to the annual average traded volume.

We will say that a node i is assigned to hub j, if the market participant
located at node i uses hub j (and only this hub) for hedging. The set of
nodes, assigned to a hub j will be called the target region of the hub j. In
practice, a market participant may hold a set of nodes of the grid and trade the
electricity in all of these nodes with certain proportion of the traded volumes
in the nodes.
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3.1 Construction of a Given Number of Hubs

The problem formulation considered here is based on the assumption that
a given number of hubs m, m < n is sufficiently small to ensure sufficient
liquidity of hubs. The goal is to minimize the total (weighted) deviation D
of the hub prices from the nodal prices in the target regions of the hubs. In
effect, this means that for simplicity we assume that each node belongs to one
market participant and each participant holds one node. The mathematical
formulation of this problem is as follows:

Min D =
n∑

i=1

m∑

j=1

δj
i

T∑
t=1

(cit − cj
t )

2wit (13)

s.t.
cj
t =

n∑

i=1

αj
i cit, j = 1, . . . , m, t = 1, . . . , T, (14)

n∑

i=1

αj
i = 1, j = 1, . . . ,m, (15)

m∑

j=1

δj
i = 1, i = 1, . . . , n, (16)

δj
i ∈ {0, 1}, αj

i ≥ 0, i = 1, . . . , n, j = 1, . . . , m. (17)

Here the variables δj
i , i = 1, . . . , n, j = 1, . . . , m define which nodes are

assigned to each hub, the variables αj
i , i = 1, . . . , n define the set of weights

within the hub j and the variables cj
t , t = 1, . . . , T give the price of hub

j, j = 1, . . . ,m at each hour t. Equation (14) gives the hub price calculation,
while equation (16) ensures that each node is assigned to exactly one of the
hubs. The constraint (15) serves for normalization of the hub price. Although
the model would be meaningful without this constraint, in certain conditions
it plays the role of a cut, as it will be seen in the proof of Proposition 1 below.

The Boolean variables δj
i may be substituted by real-valued variables rang-

ing from 0 to 1. Although this relaxation of problem (13) – (17) allows each
node to be assigned to several hubs simultaneously, it is easy to see that the
relaxed formulation always has an optimal solution with Boolean values of
all δj

i . (For each i one can assign δj
i = 1 for a single hub j which minimizes∑T

t=1(cit − cj
t )2wit.) This problem in the relaxed version was originally for-

mulated by W. Hogan [15] for the case of two hubs and extended to optional
number of hubs in [10], Appendix A.

As it is noted in [15], the relaxed formulation belongs to the class of non-
convex optimization problems, thus it is impossible to apply directly the ef-
ficient optimization techniques developed in convex optimization. However,
once the set of all variables δj

i is fixed, the remaining variables may be found
by solving a convex optimization problem; sometimes they may be assigned
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explicitly as we will see in the proof of Proposition 1 below. Alternatively,
if the set of all variables αj

i is given, the complementary assignment of the
variables δj

i is straightforward. These properties may be exploited in the non-
convex optimization algorithms [18], if they are tailored for this problem.

Note that in a feasible solution one or several hubs may have empty target
regions, i.e. for these hubs j holds

n∑

i=1

δj
i = 0.

We will call such assignments degenerate. Note that it is possible to eliminate
the empty target regions, not increasing the objective function value. This
can be done iteratively by finding a node k with the maximal value of

m∑

j=1

δj
k

T∑
t=1

(ckt − cj
t )

2wkt

and assigning it to a hub with an empty target region. The new assignment,
coupled with the available set of real-valued variables αj

i and cj
t , gives a feasible

solution and does not increase the previously found value of objective function
(in fact this holds for any choice of k).

The following proposition is aimed at finding the best-possible set of real-
valued variables, complementing a non-degenerate assignment of nodes.

Proposition 1. Suppose, wit = wi does not depend on t for all nodes i
and a feasible non-degenerate assignment {δj

i } is given. Then the optimal
price in hub j, 1 ≤ j ≤ m is calculated as the weighted average of prices in
the assigned nodes:

cj
t =

∑

i: δj
i
=1

wicit

/ ∑

i: δj
i
=1

wi. (18)

Proof. Denote by Fjt the deviation of nodal prices in hub j at hour t.

Fjt =
n∑

i=1

δj
i (cit − cj

t )
2wi.

To find hub price cj
t minimizing Fjt we differentiate it over cj

t :

∂Fjt

∂cj
t

= −
n∑

i=1

δj
i 2(cit − cj

t )wi = 0.

Solving this equation we obtain

cj
t =

n∑

i=1

δj
i wicit

/ n∑

i=1

δj
i wi.
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Denote αj
i = wi/

∑n
k=1 δj

kwk if δj
i = 1 and αj

i = 0 otherwise. It is easy to
check that

∑n
i=1 αj

i = 1, so the obtained solution is feasible and hence it is
optimal. Q.E.D.

In conditions of Proposition 1, hub j, 1 ≤ j ≤ m is completely defined by
its target region

Hj = {i : δj
i = 1, i = 1, . . . , n},

since the coefficients αj
i are given by

αj
i = wi

/ ∑

k: δj
k
=1

wk.

In the special case where the weights wi are all identical, the problem
turns into the classical minimum sum-of-squares clustering problem: find a
partition of a given finite set of vectors in Euclidean space into several disjoint
sets (clusters), minimizing sum of squared distances from each element to the
centroid of its cluster. Here centroid means the simple average of vectors in a
cluster. Currently the complexity status of this problem is open, in spite of a
number of attempts to prove that this problem is NP-hard (see the survey [1]).
This problem has been deeply studied during the last 50 years and a number
of exact and heuristic approaches to its solution have been developed (see the
survey in [11]). Some of them will be discussed in Section 4.

In the case of identical weights wi, the optimal hub price (18) equals to
the simple average of the nodal prices, which makes it appropriate to impose
a lower bound nmin, nmin ≤ n/m on the number of nodes in each hub:

nmin ≤
n∑

i=1

δj
i , j = 1, . . . , m. (19)

This modification of the problem is not studied as much as the minimum
sum-of-squares clustering problem and its solution may require some modifi-
cation of the well-known clustering methods or application of general-purpose
optimization tools.

Let us consider what modification of the objective function (13) is re-
quired in order to minimize the total observed variance (6), assuming that
participants use the hedge ratio approach described above. With simplifying
assumption that the prices are stationary distributed, the estimated variance
σ̂2

i of price cit in node i, as well as the estimated correlation ρ̂ij between the
nodal price cit and the hub price cj

t , can be expressed on the basis of the
historical data. Then equation (11) leads to the following criterion:

Min
n∑

i=1

m∑

j=1

δj
i σ̂

2
i

(
1− ρ̂2

ij

)
, (20)

where
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σ̂2
i =

T∑
t=1

(
cit − 1

T

T∑
t=1

cit

)2 /
(T − 1),

ρ̂2
ij =

(
T

∑T
t=1 citc

j
t −

∑T
t=1 cit

∑T
t=1 cj

t

)2

(
T

∑T
t=1 c2

it −
(∑T

t=1 cit

)2
) (

T
∑T

t=1(c
j
t )2 −

(∑T
t=1 cj

t

)2
)

for i = 1, . . . , n, j = 1, . . . , m.

3.2 Single Hub Selection

The purpose for formulation of the Single Hub Selection Problem in this sec-
tion is to refine a set of m preliminary hubs by selecting a refined hub within
each of them. The set of preliminary hubs may be a result of selecting a given
number of hubs, or it may describe an existing set of hubs or zones in the
electricity market.

We can assume without loss of generality that the set of nodes of the
preliminary hub is {1, . . . , N}, where N ≤ n. In what follows, talking about
the Single Hub Selection Problem we will use the term “hub” only for the
refined hub, while the preliminary hub will be referred to as a given set of
nodes or cluster .

We will assume that the hub is chosen with respect to the locational en-
ergy prices of the market participants situated in the target region of the hub.
Let prt denote the energy price of participant r, r = 1, . . . , R at hour t. A
particular definition of the price of participant does not matter. In case a
participant r has the injection/withdrawal of energy within a single node i of
the grid, the energy price of this participant usually equals cit. If the injec-
tion/withdrawal of a participant is spread over a number of nodes, then the
price prt may be calculated as a weighted average of the nodal prices according
to some market rules.

Suppose the hub price is always computed as an average price over all
included nodes, and require that the hub contains at least nmin nodes. Then
the Single Hub Selection Problem consists in minimizing the sum of squared
differences of the prices of participants from the hub price with respect to a
given set of weights of market participants Wrt, r = 1, . . . , R:

Min f =
T∑

t=1

R∑
r=1

(ct − prt)2Wrt (21)

s.t.

ct =
1
L

N∑

i=1

xicit, t = 1, . . . , T, (22)
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N∑

i=1

xi = L, (23)

L ≥ nmin, (24)

xi ∈ {0, 1}, i = 1, . . . , N, ct ≥ 0, t = 1, . . . , T. (25)

Here the binary variables xi turn into 1 whenever node i is included into
the hub. The variables ct define the hub price at time t, t = 1, . . . , T . The
complexity status if this problem in the special case, when each participant is
located in its own node, is established by the following proposition.

Proposition 2. The Single Hub Selection Problem (21)–(25) is NP-hard
even when R = N, pit = cit for all i = 1, . . . , N, t = 1, . . . , T and T = 2.

The proof of Proposition 2, provided in the Appendix, is based on a trans-
formation from an NP-complete Partition problem.

4 Heuristics for Construction of Given Number of Hubs

In this section, we discuss two well-known clustering heuristics in the con-
text of the Hubs Construction Problem. We assume that all nodes are given
constant weights wi. According to Proposition 1, it is sufficient to partition
the set of nodes {1, . . . , n} into m clusters H1, . . . , Hm, minimizing the total
weighted squared error:

Min S =
m∑

j=1

∑

i∈Hj

wi

T∑
t=1

(cit − cj
t )

2,

where the hub price cj
t is calculated as the weighted average of nodal prices

in cluster Hj :

cj
t =

∑
i∈Hj

citwi∑
i∈Hj

wi
. (26)

4.1 The H-Means Method

R. Howard [19] is considered to be the first one who outlined the clustering
method H-means. Here we view this algorithm in adaptation to the Hubs
Construction Problem with a given number of hubs. Starting with an initial
set of points cj , j = 1, . . . ,m in T -dimensional Euclidean space, H-means
algorithm iterates the following three steps:

1. For each node i, i = 1, . . . , n, find the closest cj , j ∈ {1, . . . , m} w.r.t.
Euclidean distance and place the node i into the cluster Hj .

2. Let m′ be the number of non-empty clusters and reorder the clusters so
that H1, . . . ,Hm′ 6= ∅.
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3. Recalculate cj for all j = 1, . . . ,m′ according to (26) with the new parti-
tion H1, . . . , Hm′ .

The algorithm terminates when the set of clusters does not change any
more. If during the run of the algorithm the number of non-empty clusters m′

falls below m, the assignment of nodes becomes degenerate.
In the case when all weights wi are identical, it is well known [9] that

Step 1 gives the optimal partition for the given centroids, and Step 3 gives
the optimal centroids location for the given partition. In view of Proposition 1,
it is easy to see that the same holds if wi are not identical.

At each iteration, the value of objective function can not increase, so the
algorithm will eventually reach some value of objective function it can not
further improve. This will take only a finite number of iterations because there
is only a finite number of partitions of a finite data set. The computational
cost of each iteration is equal to O(mnT ).

The output of H-means depends on the initial set of centroids c1, . . . , cm

and it is not necessarily a global optimum of problem (13) – (17). The initial
values c1, . . . , cm may be provided by an expert in the form of cluster seeds
(a set of clusters, each consisting of a single node) to direct the heuristic to
some “reasonable” structure of hubs. Alternatively, one can run the H-means
algorithm a number of times with different randomly chosen cluster seeds and
choose the best output over all runs.

The computational study in [12] indicates an advantage of the following
simple modification of H-means. The difference of the modification, named
H-means+, from the original method consists in checking for degeneracy of
the assignment found. The algorithm stops if the assignment is not changing
any more and it is non-degenerate. If it is degenerate, the number of non-
empty clusters is raised up to m as it was described in Section 3.1 and the
iterations continue.

Minimization of Euclidean distance may be substituted by other crite-
ria mentioned in Section 3, e.g. objective (20). The H-means algorithm is
sufficiently flexible and it may be adjusted to use such criteria as well (on
applicability of H-means see [9, 32] and references therein).

4.2 The K-Means Heuristic

R. Jancey [21] and J. MacQueen [23] proposed the K-means heuristic which is
similar to the H-means but fits better into the standard local search scheme.
Here we use the terminology of Hubs Construction Problem, presenting a
slightly generalized version of H-means, which takes the nodal weights wi

into account.
The K-means starts from an initial partition H1, . . . , Hm of nonempty

hubs and iteratively moves a node from one hub to another to decrease the
value of objective function D. To choose a node to be moved, all possible reas-
signments are considered and the one with largest decrement of the objective
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function value is chosen. The iterations are performed until either no nodes
can be moved, or the value of D decreases unsubstantially.

Without loss of generality, suppose that node k is moved from H1 to
H2. Hubs H3, . . . ,Hm are unaffected by the move, H1 transforms into H̃1 =
H1 \ {k}, and H2 becomes H̃2 = H2 ∪ {k}. Denote ci = (ci1, . . . , ciT ), cj =
(cj

1, . . . , c
j
T ) and

‖ci − cj‖2 =
T∑

t=1

(cit − cj
t )

2

and find the difference between total weighted squared errors analogously to
the computations in [31]:

D̃ −D =
∑

i∈H̃1

wi‖ci − c̃1‖2 +
∑

i∈H̃2

wi‖ci − c̃2‖2

−
∑

i∈H1

wi‖ci − c1‖2 −
∑

i∈H2

wi‖ci − c2‖2

=
∑

i∈H1

wi‖ci − c̃1‖2 +
∑

i∈H2

wi‖ci − c̃2‖2

−
∑

i∈H1

wi‖ci − c1‖2 −
∑

i∈H2

wi‖ci − c2‖2

− wk‖ck − c̃1‖2 + wk‖ck − c̃2‖2
=

∑

i∈H1

wi

(‖ci − c̃1‖2 − ‖ci − c1‖2)

+
∑

i∈H2

wi

(‖ci − c̃2‖2 − ‖ci − c2‖2)

− wk‖ck − c̃1‖2 + wk‖ck − c̃2‖2.
Due to the equality

‖ci − b‖2 − ‖ci − a‖2 =
T∑

t=1

(at − bt)(2ckt − at − bt)

= 2
T∑

t=1

(at − bt)(ckt − at) + ‖b− a‖2,

one has ∑

i∈H1

wi

(‖ci − c̃1‖2 − ‖ci − c1‖2)

=
∑

i∈H1

wi‖c̃1 − c1‖2 + 2
∑

i∈H1

wi

T∑
t=1

(c1
t − c̃1

t )(cit − c1
t )

= ‖c̃1 − c1‖2
∑

i∈H1

wi + 2
T∑

t=1

(c1
t − c̃1

t )
∑

i∈H1

wi(cit − c1
t ).
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By definition of the hub price,
∑

i∈H1

wi(cit − c1
t ) = 0.

Similar calculations are used for other summands to obtain,

D̃ −D = ‖c̃1 − c1‖2
∑

i∈H1

wi + ‖c̃2 − c2‖2
∑

i∈H2

wi − wk‖ck − c̃1‖2 + wk‖ck − c̃2‖2.

Therefore, one chooses the reassignment providing the minimal value of D̃−D
among all possible moves of each node.

The computational cost of one iteration is equal to O(mnT ), as well as
in the H-means. This algorithm may be restarted a number of times from
randomly chosen partitions.

The K-means and H-means clustering methods are probably the most
widely used in practice. This is due to the simplicity and computational effi-
ciency of these algorithms. The quality of their solutions, however, may be far
from the optimal. This is demonstrated, e.g. in [12], where both of these algo-
rithms were experimentally compared to the Variable Neighborhood Search.
A significant improvement of output results of K-means and H-means is re-
ported for a combined method, which firstly starts the H-means+, and the
obtained solution is further optimized by the K-means. This finding is consis-
tent with the fact that any solution, which is non-improvable for the K-means,
is also non-improvable for the H-means, while the converse is not true [34].

We have considered only two well-known heuristics adapted to the Hubs
Construction Problem. A number of other exact and heuristic approaches,
such as the branch-and-bound algorithms, metaheuristics, hierarchical clus-
tering heuristics and other methods (see e.g. [11, 12] and references there)
can be also applied to the Hubs Construction Problem and its modifications.
However, the main limiting factor, which may hinder the usage of some of
these methods, is a large dimensionality of typical instances of the Hubs Con-
struction Problem. A generalization of the known methods to the case of
time-dependent nodal weights wit constitutes another challenge for algorith-
mic research.

4.3 Experimental Evaluation of the K-Means on PJM Data

Performance of the K-means method described in Section 4.2 is tested here on
the Real-Time Market hourly prices from PJM Interconnection, available at
http://www.pjm.com. The input includes hourly data of 5 weeks, each week
representing one of the months from January to May of year 2007, in total
840 records for each of n = 7599 nodes. Analogously to the existing 11 PJM
hubs, m = 11 is chosen. All nodal weights are set to 1.

The K-means is programmed in C++ and tested on Pentium-IV, 3 GHz
machine. A series of 30 independent runs is made with random initial solu-
tions, each run taking from 40 min to 1 hour. The best outcome in terms of
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the objective function (13) consists of 11 hubs with sizes ranging from 152 to
1898 nodes. It turns out that if the price of the new hubs were computed as
the simple average of their nodal prices, then our largest hub would be the
closest one to the existing Western hub. We denote this hub by LS-Hub1. The
closest to LS-Hub1, among the existing hubs, is Dominion.

An 825-node hub, closest to PJM Eastern hub, we denote by LS-Hub2.
It also tightly approximates the existing New Jersey hub. The hubs AEP
Gen, AEP Dayton, Chicago Gen, Chicago, Northern Illinois and Ohio are
approximated by other hubs found by the K-means. The Western Interface
has no equivalent in the set of our hubs. At the same time the set of our hubs
contains a high-price hub of 313 nodes with no equivalent among the existing
hubs.

Fig. 2. Energy prices in PJM Western Hub, PJM Eastern Hub, LS-Hub1 and LS-
Hub2 on May 11–13, 2007

Figure 2 demonstrates the behavior of prices in Western, Eastern, LS-Hub1
and LS-Hub2 during tree days from Friday, May 11 to Sunday, May 13, 2007.
As it can be seen from the figure, the prices of PJM Eastern and LS-Hub2
are very close. However, PJM Western hub does not have the price peaks as
high as the peaks of its counterpart LS-Hub1. The graph of Dominion exactly
overlaps with LS-Hub1, so we not display it on the figure.
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Absence of exact counterpart for the PJM Western hub in the output of
the K-means heuristic may be due to the difference of clustering methods
and their settings, different historical data and subsequent optimization and
modifications of PJM Western hub, which followed the initial clustering stage.
A higher volatility of our largest hub LS-Hub1, compared to PJM Western,
may lead to lower liquidity of LS-Hub1 because the price of the latter may be
more difficult to predict. At the same time, the companies located in BGE,
Dominion and PEPCO, experiencing high on-peak prices could use the LS-
Hub1 more actively for hedging their contracts, which is a positive factor for
the hub liquidity.

This computational experiment illustrates that even a simple K-means
clustering can produce a meaningful initial grouping of nodes. The running
time of the K-means is not exceptionally high even for a system of about 7000–
8000 nodes and the same approach could be applied to the data representing
all 12 months of the year.

5 Solving the Single Hub Selection Problem

The non-linear discrete optimization problem (21)–(25) can be transformed
into a family of Boolean linear programming problems, each one with a differ-
ent value of parameter L, L = nmin, . . . , N . Let us consider a term (ct− prt)2

from (21) for any pair of r and t:

(ct − prt)2 =

(
1
L

N∑

i=1

xicit − prt

)2

=

1
L2

N∑

i=1

(c2
it − 2Lcitprt)xi +

2
L2

N∑

k=1

k−1∑

l=1

cktcltxkxl + p2
rt. (27)

In view of this expression, one can remove the non-linearity from the objective
function (21) by introducing new variables ykl, k = 1, . . . , N, l = 1, . . . , k− 1
so that

ykl = xkxl, k = 1, . . . , N, l = 1, . . . , k − 1. (28)

The set of equalities (28) may also be substituted by a system of linear con-
straints:

ykl ≤ xk, ykl ≤ xl, k = 1, . . . , N, l = 1, . . . , k − 1, (29)

ykl ≥ xk + xl − 1, k = 1, . . . , N, l = 1, . . . , k − 1. (30)

Therefore, the Single Hub Selection Problem with given value L becomes
a mixed integer linear programming (MIP) problem. In view of (27), it is easy
to notice that constraints (29) are always satisfied in the optimum, even if



22 P. A. Borisovsky et al.

they were not included into problem formulation. Now we can conclude that
problem (21)–(25) reduces to solving the following family of MIP problems:

Min C0 +
N∑

i=1

Cixi +
N∑

k=1

k−1∑

l=1

Bklykl (31)

s.t.
ykl ≥ xk + xl − 1, k = 1, . . . , N, l = 1, . . . , k − 1, (32)

N∑

i=1

xi = L, (33)

xi ∈ {0, 1}, i = 1, . . . , N, (34)

yk,l ≥ 0, k = 1, . . . , N, l = 1, . . . , k − 1, (35)

where L ∈ {nmin, . . . , N} and the coefficients of objective function are:

C0 =
R∑

r=1

T∑
t=1

p2
rtWrt,

Ci =
1
L2

R∑
r=1

T∑
t=1

(c2
it − 2Lcitprt)Wrt,

Bkl =
2
L2

R∑
r=1

T∑
t=1

cktcltWrt.

Indeed, if one selects the value L which yields the optimum with minimal
objective function among all problems (31)–(35) of the family, it will be the
optimal solution to problem (21)–(25) as well.

An important property of this MIP formulation is that now the time di-
mension T and the total number of market participants R do not influence
the dimensionality of the model because these parameters are excluded from
consideration at the stage of computing the coefficients Ci and Bkl. This fact
becomes important, e.g. when the historical data consist of the nodal prices
of all hours of the previous year. Taking into account that when the number
of variables is bounded, the MIP problems fall into the class of polynomially
solvable problems [22], we conclude that the Single Hub Selection Problem
is also polynomially solvable, if the number of nodes is bounded above by a
constant.

5.1 Genetic Algorithm

Genetic algorithm (GA) originally proposed by J. Holland [17] is a random
search method that models a process of evolving a population of individu-
als. Each individual corresponds to some solution of the problem (feasible
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or maybe infeasible) and it is characterized by the fitness, reflecting the goal
function value and satisfaction of problem constraints. The higher is the fitness
value, the more chances are given for the individual to be selected as a parent.
New individuals are built by means of crossover and mutation procedures. The
crossover procedure Cross produces the offspring from two parent individuals
by combining and exchanging their elements. The mutation procedure Mut
adds small random changes to an individual. The size of population K is kept
constant throughout the run of a GA. A detailed description of the GAs and
their properties may be found e.g. in [28].

For solving the Single Hub Selection Problem we use the binary represen-
tation of solutions in the GA, i.e. an individual in our case is a string g which
coincides with the Boolean N -dimensional vector x. The fitness of individual
is inversely proportional to the objective function value. Parent genotypes are
selected by s-tournament selection operator: choose s individuals from the
population at random and return the best of them (by default in this section
“random” means random with uniform distribution). This selection opera-
tor is used to choose each of the two parents independently. New individuals
are produced by the 2-point crossover operator, which chooses randomly two
breakpoints in parent genotypes and exchanges all bits in the middle part.
The standard mutation inverses each bit independently with a fixed proba-
bility pm. If after crossover and mutation the obtained genotype contains less
than nmin ones then a repair procedure is applied. This procedure simply adds
more ones to the child individuals at random positions. The overall scheme of
the GA used here is as follows:

Genetic Algorithm
1. Generate K random genotypes and add into the initial population.
2. While the termination condition is not met, do

2.1. Choose the parent genotypes gu, gv by s-tournament selection.
2.2. Produce g, h from gu and gv

using 2-point crossover with probability pc,
otherwise assign g = gu, h = gv.

2.3. Mutate each gene of g and h with probability pm.
2.4. Apply repair procedure to g and h.
2.5. Choose two individuals of least fitness in the current population

and substitute them by g and h, if they have greater fitness.
3. Return the best found solution as a result.

5.2 Experiments with the GA and CPLEX MIP-Solver

The genetic algorithm is tested here on the hourly electricity prices over
365 days from the day-ahead two-sector electricity market of the European
zone of Russia collected in years 2004-2005. First of all, the H-means heuris-
tic is applied to form a set of clusters (preliminary hubs), using identical
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weights wi = 1, i = 1, . . . , n. The GA is applied to form one hub in each clus-
ter. The problem characteristics and the results are given in Table 1. Here the
larger instances P3, P4, and P5 correspond to clusters located in Urals-Volga,
Urals-Tyumen, and Center regions accordingly. The smaller ones, P1 and P2,
are constructed as random subsets from the cluster of P3. The instances P6,
P7, and P8 are based on the same clusters as P3, P4 and P5, but considered
over half-year (4343 hours) time horizon. The required minimal number of
nodes nmin for the GA is set to [N/2] (here the brackets [·] denote rounding
to the nearest integer). In our experiments, we set the following control pa-
rameters: s = 20, pc = 1/2, K = 200 and pm = 1/N . The actual number of
nodes L in the computed hubs turns out to be equal or close to nmin. This
value of L is used in problem formulation (31)–(35), which is also solved by
CPLEX 11.0. The amount of CPU time at Celeron 2.8 GHz is indicated in
the table as well. After this time both algorithms are terminated.

The results show a clear advantage of the GA in terms of the running
time and the solution quality. The lower bounds obtained by CPLEX in the
given amount of time are negative in most of the cases and they cannot be of
practical use. For problem P8 CPLEX fails because of memory limitation.

Table 1. Comparison of the GA and CPLEX 11.0

Problem N R T CPLEX CPLEX CPLEX GA GA
CPU time best sol lo. bound CPU time best sol

P1 15 14 500 15 sec. 26.97 26.97 <1 sec. 26.97
P2 25 14 500 5 min. 22.97 -8641 <1 sec. 22.95
P3 82 14 500 5 min. 24.53 -69230 10 sec. 23.24
P4 118 15 500 5 min. 23.8 -62137 30 sec 23.53
P5 336 69 500 10 min. 16.19 -72755 2 min 14.46
P6 82 14 4343 30 min. 196.55 -519978 5 min. 146.28
P7 118 15 4343 60 min. 389.80 -545399 5 min. 364.25
P8 336 69 4343 - - - 10 min. 208.00

Evaluation and comparison of the obtained hubs.

In the clusters corresponding to P6, P7, and P8 the following different hubs
are constructed and compared:

1. A hub constructed by the GA minimizing quadratic objective (21).
2. A hub constructed by the GA minimizing linear objective

T∑
t=1

R∑
r=1

|ct − prt|Wrt. (36)

3. A hub constructed by the GA maximizing linear objective (36). This hub
gives a worst case in a linear model (for the sake of comparison only).



Trading Hubs Construction for Electricity Markets 25

4. A hub containing all nodes of a cluster.
5. A hub containing a randomly chosen subset of nodes of a cluster (every

node is included independently of the other nodes with probability 0.5).

The set of conditions (23)–(25) is never changed. The comparison is illustrated
by Fig. 3. Here each hub is represented by a point on a plane where X and
Y axes correspond to the values of linear and quadratic objective functions.
The results show that the optimized hubs are far from the worst case hub in

Fig. 3. Evaluation and comparison of different solutions to Single Hub Selection
Problem

terms of both criteria and not so much distant from each other. In the cases
of P7 and P8, the hub optimized w.r.t. linear objective (36) has even greater
value of quadratic objective (21) than the hub consisting of all nodes of the
cluster. This indicates that the choice of optimization criterion is important
and it should be adjusted to the interests of participants.

Figure 3 implies that some proper subsets of the cluster can constitute
better hubs than the set of all nodes. The question about the trade-off between
the number of nodes in hub and the attainable objective value is addressed
in the next experiment, where we ran the GA minimizing quadratic objective
separately for different values of nmin. The results are shown on Fig. 4. One
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can see that a fast growth begins near the point nmin = 40, so this setting
is a plausible candidate to form a hub. In practice, a graph of such type
can provide useful information for the decision-maker, who needs to choose
a sufficiently large value of nmin without significant compromise in distance
between the hub price and the locational prices of participants.

Fig. 4. Trade-off between the number of nodes in hub and the objective value

6 Conclusion

We have considered the Hubs Construction Problem from the optimizational
prospective. Our analysis of this problem indicated that even though its con-
nections with clustering problems allow to apply the well-known clustering
methods, some important constraints and criteria do not necessarily fit into
the clustering framework. In view of large dimensionality of typical instances
of the Hubs Construction Problem, further development of the specialized
optimization algorithms is important to support decision making.

A set of heuristic algorithms, we have considered, allows to find practically
useful solutions. Even if the clustering algorithm does not yield an acceptable
solution for most of the market participants, each of the obtained hubs can be
further refined by solving a Single Hub Selection Problem. A genetic heuristic
is shown to be suitable for finding approximate solutions to this problem with
different criteria.

An important direction for further research is evaluation of the Principal
Component Analysis and its comparison to the optimization-based methods
described in this chapter. In some situations the hubs need to be defined even
before the new electricity market opens. The statistical data on LMP prices
is absent in such cases and one has to construct the hubs using some kind of
market simulation and/or the statistical data describing the transmission of
the electric power in the grid. This presents another challenge for research.
The issues of hubs construction in view of negative influence of the market
power require a careful consideration as well.
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Appendix

Proof of Proposition 2. The proof is by reduction from the following NP-
complete version of Partition problem (see Appendix 3.2 in [8]): Given M
integers a1, . . . , aM , recognize the existence of such subset I ⊆ {1, . . . , M} of
cardinality M/2 that

∑
i∈I ai = 1

2

∑M
i=1 ai.

Given a set of integers a1, . . . , aM , we construct an instance of the Single
Hub Selection Problem with T = 2, N = M + 2, and nmin = M/2 + 1.

We assign the data of hour 1 in such a way that any optimal solution H∗

to the Single Hub Selection Problem (i) will consist of M/2 + 1 nodes, (ii) it
will contain the node number M + 1 and (iii) it will not contain the node
number M + 2. To this end we put Wi,1 = 0, i = 1, . . . , M ; WM+1,1 = 1,
WM+2,1 = 0; ci,1 = K, i = 1, . . . , M ; cM+1,1 = 0, cM+2,1 = 2K, where the
parameter K is sufficiently large (its value will be chosen later). Note that
with these assumptions the price of a hub H at hour 1 will be

c1 =





K, if M + 1 6∈ H, M + 2 6∈ H;
K(1− 1/|H|), if M + 1 ∈ H, M + 2 6∈ H;
K(1 + 1/|H|), if M + 1 6∈ H, M + 2 ∈ H;
K, if M + 1 ∈ H, M + 2 ∈ H.

(37)

At the same time, the only non-zero term, associated with hour 1 in sum (21)
equals (c1)2. Thus, if K is sufficiently large and the input data for hour 2 does
not depend on K, then the optimal hub will always meet conditions (ii), (iii)
and involve the minimal admissible number of nodes, i.e. condition (i) holds
as well.

Now we proceed to the input data of hour 2, which will ensure equivalence
of (21)–(25) to the given Partition problem, assuming that conditions (i)–(iii)
are satisfied. Let ci,2 = ai(M/2 + 1), i = 1, . . . , M ; cM+1,2 = 0, cM+2,2 =
1
2

∑M
i=1 ai. Then in hour 2 the hub price for an optimal hub H∗ will be c2 =∑

i∈H∗ ai. Finally, assign Wi,2 = 0, i = 1, . . . ,M + 1 and WM+2,2 = 1. It is
clear that to ensure (i)–(iii) it is sufficient to assign K = M

∑M
i=1 ai.

Note that the only non-zero summand in (21) at hour t = 2 is (c2 −
cM+2,2)2, which attains the minimum equal to 0 if and only if

∑
i≤M, i∈H∗ ai =

1
2

∑M
i=1 ai. So, the optimal value of criterion (21) is equal to K(1−2/(M +2))
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if and only if there exists the set I required in the Partition problem. Thus, we
have reduced an NP-complete problem to the Single Hub Selection Problem,
and the reduction can be computed in polynomial time. Q.E.D.
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