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Abstract. The trading hubs construction problem for electricity mar-

kets under locational marginal prices is considered. Given historical prices

for all nodes of the electricity grid and for all market participants over a

sufficiently long period of time, the problem is to choose a required num-

ber of node clusters (hubs) and to assign market participants to hubs so

as to minimize the deviation of hub prices from the prices of participants

under certain constraints.

In view of problem complexity, two evolutionary algorithms are proposed:

a genetic algorithm and a hybrid local search heuristic. It is proved that

the proposed genetic algorithm converges to optimum almost surely. The

algorithms are tested and compared on the real-life data. The structure

of the fitness landscapes is analyzed using multiple restarts of the local

search and the behavior of the evolutionary algorithms is explained on

the basis of this analysis.

Key words: Clustering, Genetic algorithm, Local search, Electricity

markets, Locational marginal prices, Futures contracts

1 Introduction

In the modern electricity spot markets under locational marginal

pricing the electricity price is not unique, it varies from one node of

the power grid to another and from one pricing period to another [4,

12]. Here the nodes i = 1, . . . , n of a power grid correspond to the

points of connections of generators or power consumers and network

substations to the transmission lines. In some nodes the price may

be temporary undefined due to accidents or planned maintenance.

The market participants in this situation are interested in one

or several reference prices to hedge the price risks by settling the

futures contracts. These reference prices can be calculated by taking

the arithmetic average or a weighted average of energy prices over a

cluster of nodes with typical price dynamics for some region. A set

of cluster nodes H ⊆ {1, . . . , n} with a set of weights αi, i ∈ H,

assigned to them is called a trading hub (hub for short). An example



of price behavior can be seen in Fig. 1. This figure contains the Real-

Time data for two nodes and two hubs of PJM system operator.

If the price is undefined in some nodes of a hub at a certain pricing

period, then the hub price is averaged only over the set of the hub

nodes where the price is defined (if this set is empty, the hub price

is undefined at the problematic time interval). Further details on

hedging by means of futures and forward contracts on hub price and

some examples of trading hubs in the existing electricity markets can

be found e.g. in [2].

Fig. 1. Real-Time LMP prices at two nodes and two hubs in PJM Interconnection as

of 13 Feb 2007. The plot suggests that Western hub is preferable for hedging in node

Limerick, while node Arlington might be better hedged in some other hub.

Informally, the Hubs Construction Problem consists in finding a

given number of hubs which would approximate as much as possible

the price dynamics in connection points of the market participants

and respect some additional constraints, depending on variation of



the problem. Since the values of nodal prices in future are unknown,

in most practical cases it is acceptable to assume that in future the

price dynamics will be similar to that in a preceding sufficiently long

historic period (one year or more).

One of the important requirements imposed on the set of hubs

in electricity market is the liquidity of futures trades in these hubs,

which implies that there should be a sufficient number of market par-

ticipants willing both to sell and to buy futures contracts in each hub.

The liquidity requirement is difficult to formalize because this prop-

erty depends on many non-formalized factors like market structure

and trading strategies of market participants, but some well-defined

characteristics of hubs may create appropriate conditions for liquid

trades. These characteristics include closeness of the hub prices to

the prices of many participants, sufficiently small number of hubs,

low probability of the event that the hub price is undefined and low

market concentration in each of the hubs. The last characteristic can

be measured by the Herfindahl-Hirschmann index (see the details in

Subsection 2.2). Requirements for these features may be included in

the form of constraints in the Hubs Construction Problem.

The electricity grid may contain thousands of nodes, and the

problem should be solved on the basis of analysis of historical nodal

prices over thousands of pricing periods, which makes it a hard large-

scale optimization problem. We suggest further some modifications

of the problem which are more adjusted to the practical needs.

In view of complexity of this problem, instead of finding an ex-

act solution we propose and compare two heuristic methods for it: a

genetic algorithm and a hybrid local search heuristic combining lo-

cal search with a simple evolutionary algorithm (1+1)-EA. We have

proved that the proposed genetic algorithm converges to optimum

almost surely. The algorithms are tested and compared on the real-



life data. The structure of the fitness landscapes is analyzed using

multiple restarts of the local search and the behavior of the evolu-

tionary algorithms is explained on the basis of this analysis.

The paper is organized as follows. In Section 2, we formally state

the problem and its modifications. The proposed algorithms are de-

scribed in Section 3 and the computational results are provided in

Section 4. Section 5 contains the conclusions.

2 Background and Problem Formulation

A market participant may possess one or several nodes of the grid

and trade electricity at spot market in all of these nodes. In fact,

the set of nodes of a participant may consist of several groups of

connection points, where each group contains the nodes of a separate

industrial enterprise or power plant or a populated area. When a

participant trades electricity at the wholesale market, any contract

of this participant applies to a certain group of connection points

rather than separate nodes independently.

The electricity price of a group of connection points is calculated

on the basis of the nodal prices as a weighted average of the nodal

prices. Let R be the set of market participants, G be the set of all

groups of connection points and let Gr denote the set of groups of

connection points belonging to a participant r. For any g ∈ G, a

vector (pg1, . . . , pgT ) of prices of this group of connection points over

the historical period 1, . . . , T is given. Besides this, a vector of nodal

prices (ci1, . . . , ciT ) is provided for each of the nodes i = 1, . . . , n. The

pricing periods 1, . . . , T are called hours in what follows (usually in

practice they equal to 1 hour).

The number of required hubs m is given (usually m is not large, up

to 10). Parameter m should be chosen, keeping in mind that on one

hand, too many hubs will disperse the market participants into small



groups attracted to different hubs which will be of little liquidity

therefore; on the other hand, too few hubs will poorly approximate

the prices of some participants and they may loose interest in trading

futures in hubs.

To indicate different significance of different groups of connection

points, the weighting factors wg, g ∈ G, are introduced. In this

paper, we assume that the weights are equal to the average traded

volumes wg = W gen
g + W con

g . Here and below W gen
g is the average

amount of power sold and W con
g is the average amount of power

bought in a group of connection points g at the spot market in the

given historical period. Alternatively, one can assign a set of weights

e.g. equal to the installed capacity in the group of connection points.

Note that the algorithms proposed in this paper can be extended to a

more general setting, where the weighting factors are defined variable

in time.

For simplicity of the models in this paper we assume that the

nodal prices are defined for all hours.

Let us assume that the measure of closeness between the price Cjt

of a hub j, j = 1, . . . , m, and the price pgt, g ∈ G is

d(g, j) =
T∑

t=1

(pgt − Cjt)
2wg.

2.1 Groups of Connection Points Coincide with Nodes

Originally the Hubs Construction Problem was formulated by W. Hogan,

A. Hartshorn and S. Chang [7] for the special case where each group

of connection points consists of a single node, i.e. G = {1, . . . , n}
and pit = cit, i = 1, . . . , n:

Min D =
n∑

i=1

m∑
j=1

δj
i

T∑
t=1

(pit − Cjt)
2wi (1)



s.t.

Cjt =
n∑

i=1

αj
i cit, t = 1, . . . , T, j = 1, . . . ,m, (2)

n∑
i=1

αj
i = 1, j = 1, . . . , m, (3)

m∑
j=1

δj
i = 1, i = 1, . . . , n, (4)

δj
i ∈ {0, 1}, αj

i ≥ 0, i = 1, . . . , n, j = 1, . . . , m. (5)

Here the assignment variables δj
i , i = 1, . . . , n, j = 1, . . . , m,

relate the nodes to hubs. The variables αj
i , i = 1, . . . , n, define the set

of weights within the hub j, while the variables Cjt, t = 1, . . . , T, give

the price of hub j, j = 1, . . . , m, at each hour t. Equation (2) defines

the hub price calculation. Equation (4) ensures that each node is

assigned to exactly one of the hubs. The constraint (3) is not an

indispensable part of the model, but it plays the role of a valid cut, as

it can be seen in the proof of Proposition 1 below. The optimization

criterion (1) is based on the assumption that the measure of closeness

between the hub price Cjt and the price pit, i = 1, . . . , n, is the sum

of squared differences between pit and Cjt.

As it is noted by W. Hogan, once the set of all variables δj
i is

fixed, the remaining variables may be found by solving a convex

optimization problem; sometimes they may be assigned explicitly as

we will see in the proof of Proposition 1 below.

Naturally, in an optimal solution any node i should be assigned

to a hub with minimal value d(i, j) =
∑T

t=1(pit−Cjt)
2wi among the

available m hubs, so δj
i = 1 will hold for a hub chosen this way.

Note that in a feasible solution, for one or several hubs j′ may hold∑n
i=1 δj′

i = 0. Such assignments are called degenerate.



The following proposition is aimed at finding the best-possible

set of real-valued variables {αj
i}, complementing a non-degenerate

assignment of nodes.

Proposition 1 (see [2]). Suppose, a feasible non-degenerate as-

signment {δj
i } is given. Then the optimal price in hub j, j = 1, . . . ,m,

can be calculated as the weighted average of prices in the assigned

nodes:

Cjt =
∑

i: δj
i =1

wicit

/ ∑

i: δj
i =1

wi. (6)

Proof. Denote by Fjt the weighted total deviation of nodal prices

within hub j from the hub index at hour t.

Fjt =
n∑

i=1

δj
i (cit − Cjt)

2wi.

To find the hub price Cjt minimizing Fjt we differentiate it over Cjt

and set to zero:

∂Fjt

∂Cjt

= −
n∑

i=1

δj
i 2(cit − Cjt)wi = 0. (7)

Solving this equation, we obtain

Cjt =
n∑

i=1

δj
i wicit

/ n∑
i=1

δj
i wi.

Define αj
i = wi/

∑n
k=1 δj

kwk if δj
i = 1 and αj

i = 0 otherwise. It is

easy to check that
∑n

i=1 αj
i = 1, so the obtained solution is feasible

and hence it is optimal due to (7). Q.E.D.

If n ≥ m, then it is always possible to eliminate degeneracy of

an assignment, not increasing the objective function value. This can

be done iteratively by finding a hub j′ for which more than one

node is assigned – let i′ be one of these nodes – and assigning i to a



degenerate hub j′′. The variables {αj′
i } are chosen according to (6) so

as to minimize d(i, j′) for all nodes i assigned to hub j′. To see that

the objective function value does not increase, note that the term

of objective function associated with the node i′ will now turn to

zero, and the sum of terms associated with nodes assigned to hub j′

is now minimal for this set of nodes according to Proposition 1. In

view of this observation, in what follows we can consider only non-

degenerate solutions.

In conditions of Proposition 1, hub j, j = 1, . . . , m, is completely

defined by the set of nodes assigned to it:

Hj = {i : δj
i = 1, i = 1, . . . , n},

since the coefficients αj
i are given by

αj
i = wi

/ ∑

i: δj
i =1

wi.

If the weights wi are all identical, then the problem turns into the

Minimum Sum-of-Squares Clustering Problem: find a partition of a

given finite set of vectors in Euclidean space into several disjoint sets

(clusters), minimizing sum of squared distances from each element to

the centroid of its cluster. Here centroid means the simple average

of vectors in a cluster. The Minimum Sum-of-Squares Clustering

Problem is NP-hard [1] for the number of clusters m = 2, so the

same applies to the Hubs Construction Problem (1)–(5).

Application of model (1)–(5) to the real-life data of Midwest Inde-

pendent System Operator MWISO (USA) indicated that a modern

commercial nonlinear continuous optimization package is unable to

obtain a practically suitable solution using this model [7] due to

high dimensionality of the problem and multiplicity of local optima.

Therefore the hubs for MWISO were chosen using the well-known

h-means clustering heuristic [11] neglecting the weights {wi}.



In [2] we proposed a two-stage approach to the hubs construction,

where at the first stage a given number of hubs are constructed using

clustering heuristics and at the second stage the obtained clusters

are refined using exact mathematical programming methods or evo-

lutionary algorithms. These methods proved to be applicable to the

large scale real-life instances but they do not respect some important

practical constraints discussed in the next subsection.

The special case when groups of connection points coincide with

nodes considered above is not quite applicable to the energy market

of Russia. In this market, the participants trade electricity trough a

simultaneous auction where each bid is associated with purchase or

selling electricity in a group of connection points consisting of one

or several nodes. This is why we proceed to the general case below.

2.2 Proposed Problem Formulation

Original formulation of the Hubs Construction Problem (1)–(5) lacks

some practical constraints which are usually taken into account when

the hubs are being constructed. These requirements are listed below.

The size of a hub. The nodal prices are defined only for the nodes

which are not switched off in the electricity system. However many

nodes require maintenance from time to time, or may be switched

off due to an accident. In this situation, the more nodes constitute

a set of hub nodes Hj, the more stable and predictable the hub

price Cjt can be made, and the smaller is the chance that Cjt will

become undefined in some hour. A simple assumption that all nodes

of the system have equal probability of outage implies that a minimal

admissible hub size nmin should be given. In practice the hubs usually

consist of tens or hundreds of nodes (see e.g. [8]).

If the hub price is computed as a weighted average over the hub

nodes, then outage of a node with high weight may have a significant



impact on the hub price. Therefore, the definition of a hub price

as the arithmetic average over the hub nodes is more acceptable

than the weighted hub price definition (2). The arithmetic average

is also the simplest and the most understandable for the market

participants.

Competition level at a hub. An important parameter of market com-

petitiveness is the market concentration, measured by the Herfindahl-

Hirschmann Index (HHI), which is the sum of squared market shares

in percents. High values indicate that the market is divided amongst

few market participants. HHI values greater than 1800 are considered

highly concentrated [9].

Given a family of hubs, we will say that a group of connection

points g belongs to the area of preference Gj′ ⊆ G of a hub j′ if

d(g, j′) is minimal over all j = 1, . . . , m. In what follows, it is assumed

that G1, . . . , Gm constitute a partition of set G.

The HHI indices are defined both for generation and consumption

as follows:

Igen
j =

∑
r∈R

(
100 ·∑g∈Gj∩Gr W gen

g∑
g∈Gj

W gen
g

)2

, j = 1, . . . , m, (8)

Icon
j =

∑
r∈R

(
100 ·∑g∈Gj∩Gr W con

g∑
g∈Gj

W con
g

)2

, j = 1, . . . , m. (9)

Problem formulation. The Hubs Construction Problem proposed in

this paper takes into account the practical requirements mentioned

above. In particular, in what follows we will always assume that the

hub price Cjt is calculated as an arithmetic average of the nodal

prices, i.e. it is completely defined by the set of nodes Hj and the set

of nodal prices cit, i ∈ H. The mathematical programming model of

the problem is as follows:



Min
m∑

j=1

∑
g∈G

δj
g

T∑
t=1

(pgt − Cjt)
2wg (10)

s.t.

Cjt =
n∑

i=1

xj
icit

/ n∑
i=1

xj
i , t = 1, . . . , T, j = 1, . . . , m, (11)

m∑
j=1

δj
g = 1, g ∈ G, (12)

m∑
j=1

xj
i ≤ 1, i = 1, . . . , n, (13)

n∑
i=1

xj
i ≥ nmin, j = 1, . . . ,m, (14)

∑
r∈R

(
100 ·∑g∈Gr δj

gW
gen
g∑

g∈G δj
gW

gen
g

)2

≤ Imax, j = 1, . . . , m, (15)

∑
r∈R

(
100 ·∑g∈Gr δj

gW
con
g∑

g∈G δj
gW con

g

)2

≤ Imax, j = 1, . . . , m, (16)

m∑
j=1

δj
g

T∑
t=1

(pgt−Cjt)
2 ≤

T∑
t=1

(pgt−Ckt)
2, g ∈ G, k = 1, . . . , m, (17)

δj
g ∈ {0, 1}, g ∈ G, j = 1, . . . , m, (18)

xj
i ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , m. (19)

Here the variables δj
g and Cjt have a similar meaning as in prob-

lem (1)–(5), with the only difference that now δi
j assigns a group

of connection points g rather than a separate node. The indicator

variables xj
i , i = 1, . . . , n define the set of vertices of hub j, i.e.



Hj = {i : xj
i = 1}. Equation (11) defines the hub price as an arith-

metic average over nodal prices in Hj. Equation (12) ensures each

group of connection points is assigned to exactly one of the hubs.

Inequality (13) implies that each node belongs at most to one hub.

Condition (14) imposes a lower bound on a hub size, while (15) and

(16) impose the bounds on market concentration index HHI. Prac-

titioners propose to set Imax = 1800 [9]. The constraint (17) forces

the variables δj
g to assign each group of connection points g to the

closest hub.

Note that due to the form of the objective function (10), con-

straint (17) would be redundant in the model if there were no rela-

tionships (15) and (16), which also involve the variables δj
g. Given a

family of hubs H1, . . . , Hm, in view of (17), the objective (10) may

be re-written as

f(H1, . . . , Hm) =
∑
g∈G


wg · min

j=1,...,m

T∑
t=1

(
pgt −

∑
i∈Hj

cit

|Hj|

)2

 .

The Hubs Construction Problem (10)–(19) is NP-hard when the

number of hubs is equal to 2 even if we exclude the constraints on

hub size and on HHI indices by setting nmin = 1 and Imax = 104

and suppose that all groups of connection points are nodes, G =

{1, . . . , n}. Indeed, in this case the problem becomes equivalent to

the minimum Sum-of-Squares Clustering Problem with 2 clusters,

which is NP-hard [1].

In the special case where the number of hubs equals one it was

shown in [2] that if the weights wg are substituted with time-dependent

weights wgt, this problem is NP-hard.



2.3 Alternative Distance Measure Based on Linear

Regression

The value d(i, j) =
∑T

t=1(pit − Cjt)
2 measures the squared distance

from node i to hub j. However, there is an alternative way to compare

node prices (pit) and hub prices (Cjt). In some electricity markets

the participants are interested in high correlation between the nodal

prices and the hub prices rather than in close values of pit and Cjt. In

presence of significant correlation, one can forecast the nodal prices

with the help of a linear model.

In the simplest case, the linear model predicts the node price pit

by a + bCjt, where a and b are real numbers fixed for all hours t.

Thus, one may use the value

d̃(i, j) = min
a,b

T∑
t=1

(pit − a− bCjt)
2 (20)

instead of d(i, j).

Taking partial derivatives with respect to a and b and setting

them to zero, we deduce the formulas for computing the values

a∗ =

∑T
t=1 pit − b∗

∑T
t=1 Cjt

T
,

b∗ =
T

∑T
t=1 pitCjt −

∑T
t=1 pit

∑T
t=1 Cjt

T
∑T

t=1 C2
jt −

(∑T
t=1 Cjt

)2 .

Note that substituting the obtained expression of a∗ into (20) we

get

d̃(i, j) =
T∑

t=1

(
pit − 1

T

T∑
τ=1

piτ + b∗ · 1

T

T∑
τ=1

Cjτ − b∗Cjt

)2

=
T∑

t=1

(
pit − b∗Cjt − 1

T

T∑
τ=1

(piτ − b∗Cjτ )

)2

= (T−1)·σ̂2(pit−b∗Cjt),



where σ̂(·) denotes the maximum likelihood estimate of a standard

deviation. It is known (see e.g. [2, 18]) that a market participant i,

that uses the so-called optimal hedge ratio strategy for hedging in

hub j and producing or consuming one unit of electricity power,

has the standard deviation of the financial result (i.e. the amount

received minus amount payed at spot and futures markets) equal

to minh σ(pit − hCjt). Therefore, the above choice of parameters a∗

and b∗ is equivalent to the optimal hedge ratio assumption. The

value d̃(i, j) in this case is the maximum likelihood estimate for

standard deviation of financial result of participant i using hub j,

multiplied by a constant factor (T − 1).

Conditions (10) and (17) in the problem’s formulation should be

rewritten accordingly,

Min
m∑

j=1

∑
g∈G

δj
g

T∑
t=1

(pgt − agj − bgjCjt)
2wg, (21)

m∑
j=1

δj
g

T∑
t=1

(pgt − agj − bgjCjt)
2 ≤

T∑
t=1

(pgt − agk − bgkCkt)
2, g ∈ G, k = 1, . . . , m, (22)

where the variables agj, bgj are the coefficients of linear regression for

the price at a group of connection points g, g ∈ G being a regressand

and the price of hub j, j ∈ 1, . . . , m being a regressor.

3 Algorithms Description

3.1 Genetic Algorithm

The genetic algorithm (GA) is a random search method that models

a process of evolving a population of encoded tentative solutions [10].



Encodings of solutions in the GA implementation are usually called

genotypes. Each genotype ξ corresponds to some solution x(ξ) to

the problem (feasible or maybe infeasible) and it is characterized by

the fitness F (ξ), reflecting the objective function value and satisfac-

tion of problem constraints. Each genotype in a population may be

selected as a parent, and its chances to be selected depend on the

fitness value.

New genotypes are built by means of crossover and mutation pro-

cedures Cross and Mut. Cross produces the offspring from two par-

ent genotypes by combining their elements. Mut adds small random

changes to a genotype.

Let a family Π of N solutions be the current population of the

GA. The proposed GA is based on the steady state replacement

scheme [3, 15]:

Steady state GA

1. Generate the initial population Π at random and set θ := 1.

2. While a termination condition is not satisfied, do:

2.1 Selection: choose parent genotypes ξ, η from Π.

2.2 Produce a child ζ applying the crossover: ζ := Cross(ξ, η).

2.3 Apply mutation: ζ ′ := Mut(ζ).

2.4 Choose one genotype in Π and replace it by ζ ′.

2.5 Increment the iterations counter θ := θ + 1.

3. Output the best found solution.

In our implementation of the GA, the choice of each parent on

Step 2.1 is done by the s-tournament selection: choose s genotypes

from Π at random with uniform distribution and select a one with

minimal fitness among them.



Let the genotype ξ be a vector (ξ1, . . . , ξn), where ξi, i = 1, . . . , n,

is the number of the hub to which the node i is assigned, i.e. i ∈ Hj(ξ)

iff ξi = j. Some nodes may not belong to any hub at all, which is ex-

pressed by setting ξi to zero. The family of hubs (H1(ξ), . . . , Hm(ξ))

defined by ξ is denoted by x(ξ).

Given a genotype ξ, the set of vales of all variables δj
g is defined

by choosing a closest hub for each g ∈ G. The rare cases, when ties

are present, may be resolved by enumerating all admissible assign-

ments and choosing the most appropriate one w.r.t. conditions (15)

and (16).

If a genotype ξ encodes a feasible solution, then its fitness F (ξ)

is set equal to the objective function value f(x(ξ)). If a genotype ξ

encodes an infeasible solution, then the objective value is given an

additive penalty term as described below. Let us first define the

following components for each hub Hj(ξ):

– The number of “missing” nodes is dj = max{0, nmin − |Hj(ξ)|}.
– HHI violation for generators is measured by Dgen

j = max{0, Igen
j −

Imax}, where Igen
j is defined as in (8).

– HHI violation for consumers is Dcon
j = max{0, Icon

j −Imax}, where

Icon
j is defined as in (9).

Then the fitness in the general case is defined by

F (ξ) = f(x(ξ))+

C ·
m∑

j=1

(
sgn(dj) + sgn(Dgen

j ) + sgn(Dcon
j ) +

dj

nmax

+
Dgen

j + Dcon
j

Dmax

)
.

Here we use sgn(·) for the signum function, which equals 1 for pos-

itive numbers, -1 for negative numbers and 0 for zero argument;

the constant C is the maximum squared nodal price over the whole

system through the historic period, multiplied by T |G|, i.e.

C = T |G|max{c2
it : t = 1, . . . , T, i = 1, . . . , n};



Dmax = 104−Imax is the maximum possible value of Dgen
j and Dcon

j . It

is easy to see that for any genotype, which is encoding an infeasible

solution, the fitness function F (·) gives a greater value than the

objective value of any feasible solution.

The algorithm starts its work with a randomly constructed popu-

lation of genotypes, where each node is assigned to one of the clusters

with uniform probability distribution. In Step 2.4, the genotype with

maximal fitness is chosen for deletion. The final solution returned by

the GA is decoded from the best found genotype in terms of the fit-

ness.

In view of the fact that the same set of hubs can be encoded

differently just by relabelling the hubs, first of all in the crossover

operator the two parent genotypes are aligned so that the hubs with

the same numbers have the least symmetric difference (as sets of

nodes). Formally, here a permutation {π1, . . . , πm} is sought, mini-

mizing the function
m∑

j=1

Hξ
j ∆ Hη

πj
, where Hξ

j and Hη
k are the sets of

nodes of hubs number j and k in parent genotypes ξ and η, respec-

tively. The alignment step in the crossover is similar to that in [14],

but since the number of hubs in our problem instances is small, we

solve the assignment problems using the complete enumeration.

The crossover operator is implemented using the standard uni-

form crossover: the hub number for each node is chosen randomly

from the two alternatives provided for this node in the aligned parent

genotypes. The obtained genotype undergoes mutation, where each

node with mutation probability pmut is moved into another hub, cho-

sen randomly with uniform distribution.

The fitness function evaluations are costly for large scale instances

of the problem. To speed up the GA, instead of the exact fitness

function F (·) we use its approximation F ′(·), which is computed

using only a random subset S ⊆ {1, . . . , T} of pricing periods. The



subset S is chosen with uniform distribution among all K(θ)-element

subsets of {1, . . . , T}, where the subset size K(θ) approaches T in

the process of GA computation, i.e. limθ→∞ K(θ) = T . So, at the

beginning, the GA works with a rough approximation of the true

fitness function, which nevertheless allows to significantly improve a

population quality without a heavy computational burden. As the

search continues, the approximation becomes more accurate and the

GA becomes able to distinguish solutions of higher quality.

Convergence of the GA. Let Π̂θ denote the set of genotypes of popu-

lation Π at iteration θ of the GA. We will say that the GA converges

to optimum almost surely (a.s.), if

min
ξ∈Π̂θ

F (ξ)
θ→∞−→ f ∗ with probability 1,

where f ∗ is the optimal value of objective (10).

Proposition 2. Suppose 0 < pmut < 1 and the termination condi-

tion is never met, then the GA defined above converges to optimum

a.s.

Proof. Note that the optimal solution can always be represented

by some genotype ξ∗. Besides that, application of mutation and

crossover operators to any pair of parent genotypes produces the

genotype ξ∗ with probability at least (pmut/m)n if pmut ≤ 0.5, or

at least ((1 − pmut)/m)n if pmut ≥ 0.5. Therefore, if 0 < pmut < 1

then the probability of producing the genotype ξ∗ at any iteration

is bounded below by some ε > 0, which does not depend on the

iteration number θ.

Since limθ→∞ K(θ) = T , after a finite number of iterations θ0, the

evaluations of F ′(·) will always give the true fitness F (·). A finite

number of iterations does not influence on convergence of the GA,

so in what follows, w.l.o.g. we will assume that θ0 = 0.



Now one can derive the required statement by Corollary 2.1 [17],

but for the sake of completeness we provide a straightforward proof.

Let A(θ) denote the event that no optimum is visited on itera-

tions 0, 1, . . . , θ. Then P{A(θ)} ≤ (1 − ε)θ and by properties of

probability measure,

P

{ ∞⋂

ϑ=0

A(θ)

}
= lim

θ→∞
P {A(θ)} ≤ lim

θ→∞
(1− ε)θ = 0.

Therefore, with probability 1 within a finite number of iterations an

optimal genotype ξ∗ will be found at least once. In view of assump-

tion θ0 = 0, the outline of the steady state GA implies that, after

visiting ξ∗ once, the GA will always keep a genotype with optimal

fitness value. Q.E.D.

Parallel implementation. The proposed GA was adjusted for multi-

processor workstations by running several independent threads (one

per processor), each one executing Steps 2.1 – 2.5 of the GA scheme.

The only synchronization bottleneck is the population update, how-

ever the idle processor time becomes significant only if the number

of threads is large. One more thread (the master) manages the algo-

rithm parameters, regenerates subsets of pricing periods and finally

terminates the GA.

3.2 The Hybrid Local Search Heuristic

The hybrid local search heuristic (HLS) proposed here is a com-

bination of a local search algorithm and a (1+1)-EA evolutionary

algorithm.

The Local Search Algorithm (LS) is a modification of the well-known

K-Means clustering heuristic (see e.g. [6, 13]) tailored for the Hubs

Construction Problem. The local search starts from an initial geno-

type, which is encoding a family of hubs H1, . . . , Hm and iteratively



moves a node from one hub to another aiming to decrease the value

of fitness function F (·). At each iteration, we loop through all nodes,

and check if moving the current node to a different hub decreases the

fitness function value. The best of such moves is applied to the node.

The iterations are performed until a local optimum is reached or the

counter of evaluated genotypes reaches a given upper bound θLS
max.

This algorithm may be restarted a number of times from randomly

chosen initial genotypes.

The (1+1)-EA evolutionary algorithm is based on a different def-

inition of move from one genotype to another. At each iteration,

one current genotype is available. Two nodes are randomly cho-

sen from two different hubs and if exchanging these nodes improves

the objective function, then the new genotype becomes the current

one. Otherwise, the current genotype remains unchanged. The algo-

rithm continues until the counter of evaluated genotypes reaches the

limit θEA
max.

The Hybrid Local Search Algorithm (HLS). In the hybrid algorithm,

both the local search and the (1+1)-EA are applied iteratively to

a population of genotypes so that the most promising genotypes

receive more computation time than the ones of poor quality. The

strategy used here is as follows: initially N (0) genotypes are generated

randomly and the local search is applied to each of them. All of

the obtained genotypes are used as starting points for the (1+1)-

EA. When the (1+1)-EA terminates on each of these genotypes, the

best N (1) = bN (0)/2c outcomes among N (0) results are identified

and the main iteration is repeated, i.e. the best N (2) = bN (1)/2c
genotypes are chosen and improved by the LS and the (1+1)-EA.

The process continues until the population size reaches 0. If the

termination condition is given in terms of CPU time, the rest of the



time is used for (1+1)-EA iterations working with the best found

genotype. The corresponding solution is returned as the final result.

Fig. 2. Search process of the HLS on problem S′ with m = 3.

The search process of the HLS is illustrated in Fig. 2 (the results

were obtained when HLS was applied to problem S ′ with m = 3,

see the details in Section 4). The figure shows the dynamics of the

fitness function F over the running time (in seconds). At the first

stage, N (0) = 7 genotypes are generated randomly and both the LS

and the (1 + 1)-EA are applied. The thin line corresponds to the

LS; the (1 + 1)-EA is shown by the thick line. The only feasible

solution is found in the attempt number 2. The N (1) = bN (0)/2c = 3

best genotypes numbered 2, 4, and 1 are chosen for the next stage,

where the 4-th genotype is improved. This improved genotype also

represents a feasible solution and turns out to be the best one. It is

further improved on the final stage with N (2) = 1 and the process

finishes.



4 Computational Experiments

GA, LS, (1+1)-EA and HLS algorithms were implemented in Java

using JDK 6.20 compiler and tested on 8-core Xeon based on E5420

QuadCore 2.5 GHz CPUs. The heuristics were compared on the real-

life data from the day-ahead spot market of United Energy System

of Russia with about 200 market participants, 1425 groups of con-

nection points in European zone of Russia (European problems for

short) and 216 groups of connection points in Siberian zone of Rus-

sia (Siberian problems for short). The pricing period is one hour and

the prices are computed for more than 6000 nodes in Europe and

more than 500 nodes in Siberia. On the basis of preliminary analysis

the set of nodes, that may constitute hubs, was reduced to 1161 in

European problems and 325 in the Siberian problems. The historical

period of 3 years since year 2007 was considered.

A total of 12 instances were constructed by taking the full 3-year

period in each zone (problems E’ and S’) or taking just year 2008

or 2009 with T = 8760 (problems E8, E9, S8 and S9). For Europe

nmin = 100, m = 3 or 4; for Siberia nmin = 80, m = 2 or 3.

4.1 Implementation Details

The pure local search LS and the (1+1)-EA were tested in multi-

processor mode with randomly generated initial genotypes. For each

problem instance, 8 independent threads, one per each CPU core,

were performed with the same time limit indicated below. Within

one run the multi-start approach was used for the LS: when the LS

reached a local optimum it was restarted until the given CPU time

was used up. The (1+1)-EA simply continued its iterations within

the given time limit.

The proposed GA was tested in its multi-processor version. Pre-

liminary computations showed that the quality of obtained solutions



varies significantly in different GA runs so it was decided to use a

multistart version of the algorithm. The final experiments were made

with 4 independent GA runs, each one using 2 working threads for

population update. After one third of the total time elapsed, only

two best runs continue their execution occupying 4 threads each.

Every 15 seconds the best genotype of the current population in

terms of approximate fitness F ′(·) is chosen. Let ξ∗1 , ξ
∗
2 , . . . denote the

sequence of these genotypes and let θ1, θ2, . . . be the corresponding

iteration numbers. Only for the genotypes of the sequence ξ∗1 , ξ
∗
2 , . . .,

the exact fitness F (·) is calculated using the full set of pricing periods

{1, . . . , T}.
The algorithm begins with K(0) = 250 pricing periods and in-

creases K(θi) by 250 whenever one of the following conditions is

satisfied:

– The approximate fitness has been improved, i.e. F ′(ξ∗i ) < F ′(ξ∗i−1)

but the exact fitness is increasing during the latest five 15-second

intervals: F (ξ∗i ) > F (ξ∗i−1) > . . . > F (ξ∗i−4). This indicates an

effect of “overlearning” on the current set of pricing periods.

– The fitness F (ξ∗i ) is penalized (the minimal hub size or the bound

on HHI is violated) whereas the approximate fitness at the latest

five 15-second intervals F ′(ξ∗i ), F
′(ξ∗i−1), . . . , F

′(ξ∗i−4) has not been

penalized.

– There were no improvements of F (ξ∗i ) at the last 10000 iterations

of the GA.

The GA parameters are: N = 100, s = 5, pmut = 2/n.

4.2 Computational Results

The HLS was ran independently on each of the 8 CPU cores and

the best outcome was taken. For problems E’, E8 and E9 we set



N (0) = 2, θEA
max = 3 · 103, θLS

max = 3n. For problems S’, S8 and S9 we

have N (0) = 7, θEA
max = 4 · 104, θLS

max = 4n.

All three algorithms were given equal amount of running time: 4

hours for problem E’; 2 hours for S’; 1 hour for problems E8, E9 and

30 min for problems S8, S9. The results obtained by the algorithms

are reported in Table 1. Here the values of objective function f(x) are

transformed to the cost scale by the function
√

f(x)
T |G| . The best-known

results are indicated in bold. On problem S8 the LS and (1+1)-EA

did not obtain a feasible solution in any of the runs, this is indicated

in Table 1 by the symbol “-”.

Table 1. Results of the (1+1)-EA, LS, GA and the HLS

E’ E8 E9 E’ E8 E9 S’ S8 S9 S’ S8 S9

m 3 3 3 4 4 4 2 2 2 3 3 3

LS 57.88 54.17 55.51 54.66 52.02 52.8 44.36 47.16 52.07 50.57 - 56.49

(1+1)-EA 62.99 58.33 62.93 60.74 55.21 60.06 45.61 47.61 53.64 50.07 - 56.52

GA 58.04 54.14 55.45 56.36 52.17 53.21 44.47 47.04 51.94 47.12 47.65 53.45

HLS 57.78 54.09 51.45 54.51 51.23 55.29 44.19 47.10 51.96 47.52 48.49 54.84

From the tests with the LS algorithm, we observed that for the

European problems the given time limit was not enough to reach

the local optima. For the largest problem E’ the LS made only 13

iterations (13n evaluations of the fitness function) if m = 3 and 9

iterations if m = 4. For problems E8 and E9, the number of iterations

was 25 if m = 3 and 15 if m = 4. A local optimum in the European

problems was obtained only for E9 when m = 4. On the contrary,

for the Siberian problems, the LS reached local optima many times.

For problem S’, about 50 local optima were found when m = 2 and

about 40 when m = 3 on each CPU core. For S8 and S9, each CPU

core produced about 30 local optima both in the case m = 2 and in

the case m = 3. The number of iterations made by the LS in each

run varied from 3 to 7.



The number of iterations made by the (1+1)-EA for the European

problems was quite large: approximately 25 000 for problem E’, and

50 000 for E8 and E9. For the Siberian problems it was even higher:

60 000 for S ′, and about 90 000 for S8 and S9. Note that in many

cases, the improvements were observed even on the last iterations

but they were negligibly small.

The parameters N (0), θEA
max, and θmax for the HLS were chosen

so that the running time of the algorithm would fit the given time

limit. According to the outline of the HLS (see Section 3), in case the

algorithm has finished earlier, the rest of available time is used for

iterations of the (1+1)-EA. Otherwise the computation is stopped

and the best found solution is returned. For the European problems,

the main iterations of the HLS usually took from 85% to 100% of the

available time, and so fitted well to the time limits. On the Siberian

problems, the main HLS stage was much faster and usually consumed

about 70% of the given time.

In most of the cases the improvements of fitness function contin-

ued throughout the whole running time of the GA and HLS. The

use of fitness function F ′(·) based on a reduced set of pricing peri-

ods, instead of F (·), improved the performance of the GA. The same

applies to alignment of genotypes in the crossover operator.

An additional experiment with the GA was carried out, where in-

stead of the uniform crossover, the classical single-point crossover [10]

was used. The other parameters of the algorithm remained unchanged.

In all instances, except for two (E’, m = 3 and E8, m = 3), the

GA with uniform crossover outperformed the GA with single-point

crossover. This comparison supports our original choice of the uni-

form crossover.

Number of local optima. One of the measures of the difficulty a prob-

lem presents for the local search methods is the number of the local



optima ν, induced by the neighborhood in use. The true number of

the local optima in our case can only be found by complete enumer-

ation, but the required computation time is prohibitive. Statistical

estimates for ν can be obtained using the methods proposed in [5,

16]. Here we evaluate the lower bound on ν using the results of pure

local search on problems S’, S8 and S9 with m = 2 and 3 w.r.t.

fitness function F on the domain of all genotypes. In all 150 in-

dependent restarts the local search returned different local optima,

so a lower bound on ν with confidence level 95% can be computed

as 1502/(−2 ln 0.05) = 3755, see Section 2.2 in [5]. The maximum

likelihood estimate based on Schnabel census approach [16] gives

ν̂ = 1.074 · 109. The problems E’, E8 and E9 were not considered in

this respect because the time required to reach a local optimum is

prohibitive. These problems have greater dimensions n and m and

we conjecture that they have even greater numbers of local optima.

Summary of the experiments. The estimates of the local optima num-

bers indicate that the Hubs Construction Problem presents signifi-

cant obstacles for solving it to optimality by multiple restarts of local

search method, even in the small problem instances. This might be a

reason of relatively weak LS performance on the Siberian problems.

The HLS and the GA demonstrate better performance due to their

capacity to escape the local optima where the LS is trapped.

The HLS shows advantage on the largest, most difficult problems,

while the GA is better on the smaller ones. This complementary

behavior might be due to slow convergence rate of the GA on the

problems with “deep” local optima. Note that by Proposition 2, the

GA eventually finds an optimum after a finite number of iterations

with probability 1, even though the CPU time may be practically

unacceptable. The European problems are easier for the HLS which

suitably combines two types of local moves and gives more CPU time



to those local search processes which have better current solutions.

For the Siberian problems it is not so important to move fast towards

the closest local optimum (note that the number of steps made in

each run of the LS was from 3 to 7), rather it is important to locate

the areas of the search space, where the solutions are more promising.

Practical Usage. The proposed algorithms were applied using the

distance measure based on linear regression (see Subsection 2.3) to

define the current set of hubs “Center”, “South”, “Ural”, “West-

ern Siberia” and “Eastern Siberia” for the market of United Energy

System of Russia.

Fig. 3 and Fig. 4 show the correlation coefficients between the hub

prices and the weighted average electricity prices in the administra-

tive regions which actively participate in the electricity market. The

regional average hourly electricity prices are calculated as a weighted

average over all nodes of a region with wight equal to the absolute

values of total consumption and/or generation of power in a node.

The hue shows the value of correlation coefficient. For each region,

the closest hub selection is indicated by the slant of hatching. As it

can be seen from the figures, the central region of European Russia

and Kranoyarsk region have high correlation with the closest hub

price. This is due to relatively large amounts of trading and similar

nodal price dynamics within these regions.

The price indices of these hubs are regularly published on the

site of Administrator of Trade System for United Energy System of

Russia (http://www.atsenergo.ru) and used for settlement of futures

contracts at Moscow Energy Exchange.



Fig. 3. Correlation coefficients between the average regional prices in the European

zone and the closest of the three hub prices: “South”, “Center” and “Ural” (left to

right).



Fig. 4. Correlation coefficients between the average regional prices in the Siberian zone

and the closest of the two hub prices: “Western Siberia” and “Eastern Siberia” (left to

right).



5 Conclusions

In this paper, we formulated a new modification of the Hubs Con-

struction Problem and proposed two evolutionary algorithms, the

Genetic Algorithm and the Hybrid Local Search using the (1+1)-

EA for solving it. Both algorithms were tested on a multi-processor

workstation and demonstrated complementary behavior. From the

practical point of view, the developed algorithms can serve as a useful

decision-support tool in trading hubs construction for the electricity

wholesale markets. Further research should be aimed at combining

the strong points of the two algorithms in one metaheuristic.
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