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Abstract

Recently, it has been proven that evolutionary algorithms produce good re-
sults for a wide range of combinatorial optimization problems. Some of the
considered problems are tackled by evolutionary algorithms that use a repre-
sentation which enables them to construct solutions in a dynamic program-
ming fashion. We take a general approach and relate the construction of
such algorithms to the development of algorithms using dynamic program-
ming techniques. Thereby, we give general guidelines on how to develop
evolutionary algorithms that have the additional ability of carrying out dy-
namic programming steps. Finally, we show that for a wide class of the
so-called DP-benevolent problems (which are known to admit FPTAS) there
exists a fully polynomial-time randomized approximation scheme based on
an evolutionary algorithm.

Keywords: Combinatorial optimization, dynamic programming,
evolutionary algorithms, approximation algorithms

1. Introduction

Evolutionary algorithms (EAs) [14] have been shown to be successful
for a wide range of optimization problems. While these algorithms work
well for many optimization problems in practice, a satisfying and rigorous
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mathematical understanding of their performance is an important challenge
in the area of evolutionary computing [1].

Interesting results on the runtime behaviour of evolutionary algorithms
have been obtained for a wide range of combinatorial optimization problems
(see [34] for a comprehensive presentation). This includes well-known prob-
lems such as sorting and shortest paths [39], spanning trees [33], maximum
matchings [19], and minimum cuts [30, 31]. There are also some results
on evolutionary algorithms acting as approximation algorithms for NP-hard
problems like partition [42], covering [17], and multi-objective shortest path
[22, 32] problems. But a general theoretical explanation of the behavior of
evolutionary algorithms is still missing. The first step in this direction is
taken in [37], where the authors show for an important subclass of opti-
mization problems that evolutionary algorithms permit optimal solutions in
polynomial time.

1.1. Main Contributions

The aim of this paper is to make another contribution to the theoreti-
cal understanding of evolutionary algorithms for combinatorial optimization
problems. We focus on the question how to represent possible solutions such
that the search process becomes provably efficient. When designing an evo-
lutionary algorithm for a given problem, a key question is how to choose a
good representation of possible solutions. This problem has been extensively
studied in the literature on evolutionary algorithms [38]; for example there
are different representations for the well-known traveling salesman problem
(see e. g. Michalewicz [27]) or NP-hard spanning tree problems (see e. g. Raidl
and Julstrom [36]).

Each of these representations induces a different neighborhood of a par-
ticular solution, and variation operators such as mutation and crossover have
to be adjusted to the considered representation. Usually, such representa-
tions either lead directly to feasible solutions for the problem to be optimized
or the search process is guided towards valid solutions by using some penalty
functions. Here, the representation of possible solutions in combination with
some suitable variation operators may be crucial for the success of the algo-
rithm.

Recently, it has been proven for various combinatorial optimization prob-
lems that they can be solved by evolutionary algorithms in reasonable time
using a suitable representation together with mutation operators adjusted to
the given problem. Examples for this approach are the single source shortest
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path problem [39], all-pairs shortest path problem [9], multi-objective short-
est path problem [22], the travelling salesman problem [41] and the knapsack
problem [15]. The representations used in these papers are different from the
general encodings working with binary strings as considered earlier in theo-
retical works on the runtime behavior of evolutionary algorithms. Instead,
the chosen representations reflect some properties of partial solutions of the
problem at hand that allow to obtain solutions that can be extended to op-
timal ones for the considered problem. To obtain such partial solutions the
algorithms make use of certain diversity mechanisms allowing the algorithms
to proceed in a dynamic programming way.

Note that the problem-solving capability of classical genetic algorithms
is sometimes explained using the building block hypothesis [20], which also
involves extension of partial solutions to the optimal ones. A relation of the
mentioned above EAs to dynamic programming, however, allows to obtain
more specific results in terms of average optimization time.

Dynamic programming (DP) [3] is a well-known algorithmic technique
that helps to tackle a wide range of problems. A general framework for
dynamic programming has been considered by e. g. Woeginger [43] and
Klötzler [25]. The technique allows to compute an optimal solution for the
problem by extending partial solutions to an optimal one.

An important common feature of the evolutionary algorithms [9, 13, 15,
22, 39, 41] is that each of them is based on a suitable multi-objective for-
mulation of the given problem. The schemes of these EAs and solution
representations are different, however.

The algorithms proposed in [39] and [15] are generalizations of the well-
known (1+1)-EA (see e.g. [4]) to the multi-objective case and they are based
on a different representation of solutions than the one used in our paper.

The (µ + 1)-EA in [41] employs a large population of individuals, where
each individual encodes just one partial solution. In [9, 13] it was shown that,
for the all-pairs shortest path problem on an n-vertex graph, application of
a suitable crossover operator can provably reduce the optimization time of
the EA by a factor of almost n3/4.

A special case of the DP-based evolutionary algorithm proposed in the
present paper can be found, e.g. in [22]. Both algorithms employ large
populations of individuals where an individual encodes a partial solution.
The outline of these algorithms is similar to that of the SEMO algorithm [26].

Each gene in our problem representation defines one of the DP transition
mappings, and a composition of these mappings yields the DP state rep-
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resented by the individual. The proposed EA utilizes a mutation operator
which is a special case of point mutation, where the gene subject to change is
not chosen randomly as usual, but selected as the first gene which has never
been mutated so far (see Section 3.2 for details and links to the biological
systems).

The goal of the paper is to relate the above mentioned multi-objective
evolutionary approaches to dynamic programming and give a general setup
for evolutionary algorithms that are provably able to solve problems having
a dynamic programming formulation. In particular, we show that in many
cases a problem that can be solved by dynamic programming in time T has an
evolutionary algorithm which solves it in expected time O(T · n · log (|DP |))
with n being the number of phases and |DP | being the number of states
produced at the completion of dynamic programming.

The obtained results are not aimed at the development of faster solution
methods for the combinatorial optimization problems (to construct an EA
in our framework, one has to know enough about the problem so that the
traditional DP algorithm could be applied and this algorithm would be more
efficient). Instead, we aim at characterizing the area where evolutionary
algorithms can work efficiently and study the conditions that ensure this. To
put it informally, our results imply that a class of problems that is easy for
the DP algorithm is also easy for a suitable EA for most of the reasonable
meanings of the term “easy” (solvable in polynomial or pseudo-polynomial
running time or admitting FPTAS).

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we intro-
duce a general dynamic programming formulation and the kind of problems
that we want to tackle. This dynamic programming approach is transferred
into an evolutionary algorithm framework in Section 3. Here we also show
how to obtain evolutionary algorithms carrying out dynamic programming
for some well-known combinatorial optimization problems. In Section 4, we
consider a wide class of the DP-benevolent problems which are known to
have fully polynomial-time approximation schemes based on dynamic pro-
gramming [43]. We show that for the problems of this class there exists a
fully polynomial-time randomized approximation scheme based on an evolu-
tionary algorithm. Finally, we finish with some conclusions.

The main results of Sections 2 and 3 originally were sketched in our ex-
tended abstract [8], while the main result of Section 4 was published in Rus-

4



sian in [16]. Additionally to refined presentation of results [8, 16], the present
paper contains a DP-based EA with a strengthened runtime bound for the
case of DP algorithm with homogeneous transition functions (applicable e.g.
to the shortest path problems).

2. Dynamic Programming

Dynamic programming is a general design paradigm for algorithms. The
basic idea is to divide a problem into subproblems of the same type, and
to construct a solution for the whole problem using the solutions for the
subproblems. Dynamic programming has been proven to be effective for
many single-objective as well as multi-objective optimization problems. It
is even the most efficient approach known for solution of some problems in
scheduling [35, 43], bioinformatics [6], routing (see e.g. [7], Chapters 24, 25)
and other areas.

In this section, we will assume that an original optimization problem Π
(single-objective or multi-objective) may be transformed into a multi-objective
optimization problem P of a special type. The general scheme of dynamic
programming will be presented and studied here in terms of the problem P .
Several examples of a transformation from Π to P are provided at the end
of the section.

2.1. Multi-Objective Optimization Problem

Let us consider a multi-objective optimization problem P which will be
well suited for application of the DP algorithm in some sense, as shown
below. Suppose, there are d ∈ N objectives that have to be optimized in P .
An instance of problem P is defined by a quadruple (d, g,S,D). Here g:S →
(R ∪ {∞})d is called the objective function, S is called the search space, and
g(S) ⊆ (R∪{∞})d is the objective space. D ⊆ S is a set of feasible solutions.

We introduce the following partial order to define the goal in multi-
objective optimization formally. Throughout this paper, ¹ denotes Pareto
dominance where

(y1, . . . , yd) ¹ (y′1, . . . , y
′
d)

iff yi ≥ y′i for all i for minimization criteria gi and yi ≤ y′i for maximization
criteria gi. In the following, we use the notation y′ ≺ y as an abbreviation
for y′ ¹ y and y 6¹ y′. The Pareto front is the subset of g(D) that consists
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of all maximal elements of g(D) with respect to ¹. The goal is to deter-
mine a Pareto-optimal set, that is, a minimal by inclusion subset of feasible
solutions D that is mapped on the Pareto front.

2.2. Framework for Dynamic Programs

Consider a DP algorithm for a problem P , working through a number
of iterations called phases. In each phase the DP algorithm constructs and
stores some states belonging to S. By saying that DP algorithm computes
a Pareto-optimal set for the problem P we mean that after completion of
the DP algorithm, the set of all DP states produced at the final phase is a
Pareto-optimal set for P .

Application of the DP approach to many multi-objective and single-
objective optimization problems can be viewed as a transformation of a
given problem Π to some problem P : a DP algorithm is applied to com-
pute a Pareto-optimal set for P and this set is efficiently transformed into a
solution to the given single- or multi-objective problem.

In what follows, we consider only those DP algorithms where the states of
the current phase are computed by means of transition functions, each such
function depending on the input parameters of problem P and taking as an
argument some state produced at the previous phase.

Let us start the formal definition of the DP algorithm from a simplified
version. Suppose that the simplified DP algorithm works in n phases, such
that in the i-th phase a set Si ⊆ S of states is created. We use n finite
sets Fi of state transition functions F :S → S ′ to describe the DP algorithm.
Here S ′ is an extension of space S. A mapping F can produce elements
F (S) ∈ S ′\S that do not belong to a search space. To discard such elements
at phase i, i = 1, . . . , n, a consistency function Hi is used, Hi:S ′ → R, such
that S ∈ S iff Hi(S) ≤ 0. We assume that the number n, the functions Hi

and the sets of functions Fi depend on the input instance of problem P .
The simplified DP algorithm proceeds as follows. In the initialization

phase, the state space S0 is initialized with a finite subset of S. In the i-th
phase, the state space Si is computed using the state space Si−1 according
to

Si = {F (S) | S ∈ Si−1 ∧ F ∈ Fi ∧Hi(F (S)) ≤ 0}. (1)

In the process, the consistency functions Hi serve to keep the infeasible ele-
ments emerging in phase i from being included into the current state space Si.
(Note that after completion of phase n of the simplified DP algorithm, the
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set Sn may contain some states whose objective values are Pareto-dominated
by those of other states from Sn.)

To delete the states with Pareto-dominated objective values and to im-
prove the runtime of the simplified DP algorithm defined by (1), most of
the practical DP algorithms utilize the Bellman principle (see e. g. [3]) or
its variations so as to dismiss unpromising states without affecting the opti-
mality of the final set of solutions. A formulation of the Bellman principle
in terms of recurrence (1) for the single-objective problems can be found in
Appendix A. Sufficient conditions for application of the Bellman principle
in the single-objective case were formulated in [28]. In the multi-objective
case the Bellman principle is not used, but the unpromising states may be
excluded by means of an appropriate dominance relation on the set of states.
Originally such dominance relations were introduced by R. Klötzler [25]. In
this paper, we employ a similar approach, motivated by [43].

Let us consider a partial quasi-order (i. e. a reflexive and transitive rela-
tion) ¹dom defined on S so that S ¹dom S ′ iff g(S) ¹ g(S ′). We will say that
state S is dominated by state S ′ iff S ¹dom S ′. If S ∈ T ⊆ S is such that
no S ′ ∈ T exists satisfying S ¹dom S ′, then S will be called non-dominated
in T .

As we will see, under the following two conditions the relation ¹dom is
helpful to dismiss unpromising states in the DP algorithm.

The first condition C.1 guarantees that the dominance relation between
two states transfers from one round to the next:

Condition C.1. For any S, S ′ ∈ Si−1, i = 1, . . . , n, if S ¹dom S ′ then
F (S) ¹dom F (S ′) for all F ∈ Fi.

The second condition C.2 expresses that infeasible states cannot dominate
feasible states:

Condition C.2. For any S, S ′ ∈ S ′, if S ¹dom S ′ and Hi(S) ≤ 0 then
Hi(S

′) ≤ 0.
Consider a subset Si of S. We call Ti ⊆ Si a dominating subset of Si

with respect to ¹dom iff for any state S ∈ Si there is a state S ′ ∈ Ti with
S ¹dom S ′. Let us use the notation M(Si,¹dom) to denote the set of all
dominating subsets of Si which are minimal by inclusion.

The following proposition indicates that under conditions C.1 and C.2 it
is sufficient to keep a dominating subset of states constructed in each phase i,
rather than the full subset Si.
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Proposition 1. Suppose the simplified DP algorithm is defined by (1), con-
ditions C.1 and C.2 hold and the dominating sets Ti, i = 1, . . . , n are com-
puted so that T0 ∈ M(S0,¹dom),

Ti ∈ M({F (S) | S ∈ Ti−1 ∧ F ∈ Fi ∧Hi(F (S)) ≤ 0},¹dom). (2)

Then for any state S∗ ∈ Si, i = 0, . . . , n, there exists S ∈ Ti such that
S∗ ¹dom S.

Proof. The proof is by induction on i. For i = 0 the statement holds by
assumption T0 ∈ M(S0,¹dom).

By (1), a state S∗ ∈ Si can be expressed as S∗ = F ∗(S ′), so that
Hi(S

∗) ≤ 0, F ∗ ∈ Fi and S ′ ∈ Si−1. But by induction hypothesis, there
exists a state S¦ ∈ Ti−1 such that S ′ ¹dom S¦. Now conditions C.1 and C.2
imply that S∗ = F ∗(S ′) ¹dom F ∗(S¦) and F ∗(S¦) ∈ {F (S) | S ∈ Ti−1 ∧ F ∈
Fi∧Hi(F (S)) ≤ 0}. Hence, by (2) we conclude that there exists S ∈ Ti such
that S∗ ¹dom F ∗(S¦) ¹dom S. ¤

In view of definition of¹dom, if the conditions of Proposition 1 are satisfied
and the Pareto front of g is contained in g(Sn), then this Pareto front is also
contained in g(Tn).

Proposition 2. If the conditions of Proposition 1 are satisfied, then the size
of each Ti, i = 0, . . . , n, is uniquely determined.

Indeed, consider the set of maximal elements of Si with respect to ¹dom.
Define the equivalence classes of this set with respect to the equivalence
relation x ≡ y iff x ¹dom y and y ¹dom x. The size of a minimal subset M of
the set of maximal elements, which dominates all elements of Si, is unique
since such M contains one representative element from each equivalence class.

¤
A computation satisfying (2) can be expressed in an algorithmic form as

presented in Algorithm 1. It is easy to see that when a subset Ti is completed
in Lines 8-13, condition (2) holds.

The runtime of a DP algorithm depends on the computation times for
the state transition functions F ∈ Fi, for the consistency functions Hi, for
checking the dominance and manipulations with the sets of states. Let θF be
an upper bound on computation time for a transition function F and let θH
be an upper bound for computation time of any function Hi, i = 1, . . . , n.
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Algorithm 1 Dynamic Program for P

1: T0 ← ∅
2: for S ∈ S0 do
3: if @S ′ ∈ T0: S ¹dom S ′ then
4: T0 ← (T0 \ {S ′ ∈ T0 | S ′ ≺dom S}) ∪ {S}
5: end if
6: end for
7: for i = 1 to n do
8: Ti ← ∅
9: for S ∈ Ti−1 and F ∈ Fi do

10: if Hi(F (S)) ≤ 0 and @S ′ ∈ Ti: F (S) ¹dom S ′ then
11: Ti ← (Ti \ {S ′ ∈ Ti | S ′ ≺dom F (S)}) ∪ {F (S)}
12: end if
13: end for
14: end for
15: return Tn

Sometimes it will be appropriate to use the average computation time for
the state transition functions at phase i, i = 1, . . . , n: θFi

=
∑

F∈Fi
θF /|Fi|.

In Algorithm 1, verification of condition

@S ′ ∈ Ti: F (S) ¹dom S ′ (3)

in Line 10 and execution of Line 11 may be implemented using similar
problem-specific data structures. To take this into account, we will denote
by θ¹ an upper bound applicable both for the time to verify (3) and for the
time to execute Line 11.

The body (lines 10–12) of the main loop (Lines 7–14) in Algorithm 1 is
executed

∑n
i=1 |Ti−1| · |Fi| times.

To simplify the subsequent analysis let us assume that in the if-statement
at line 10, the condition (3) is always checked. We denote the computation
time for initializing T0 with θini (Lines 1–6) and the computation time for
presenting the result with θout (Line 15), which leads to an overall runtime

O

(
θini +

n∑
i=1

|Fi| · |Ti−1| · (θFi
+ θH + θ¹) + θout

)
. (4)

In many applications of the DP, the computation time for the state tran-
sition functions and the consistency functions are constant. Besides that,
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the partial quasi-order ºdom is often just a product of linear orders and it is
sufficient to allocate one element in a memory array to store one (best found)
element for each of the linear orders. This data structure usually allows to
verify (3) and to execute Line 11 in constant time (see the examples in Sub-
section 3.5). In the cases mentioned above, the values θF , θH and θ¹ can
be chosen equal to the corresponding computation times and the overall DP
algorithm runtime in (4) can be expressed with symbol Θ(·) instead of O(·).

Note that the runtime of the DP algorithm is polynomially bounded in
the input length of problem P if θini, n, θFi

, θH, θ¹, θout, as well as |Ti| and
|Fi+1| for i = 0, . . . , n − 1, are polynomially bounded in the input length.
Here and below, we say that a value (e.g. the running time) is polynomially
bounded in the input length, meaning that there exists a polynomial function
of the input length, which bounds the value from above.

2.3. Applications of the general DP scheme

In this subsection, we point out how the general DP framework presented
above is applied to some classical combinatorial optimization problems. The
approach followed here is to describe the appropriate problem P and the
components of a dynamic programming algorithm for the solution of a spe-
cific problem Π. Most of the following examples have been inspired by the
previous works [9, 39, 41]. Note that ¹dom will be a product of linear orders
in each of these examples. In what follows id denotes the identical mapping.

Traveling Salesman Problem. Let us first consider the traveling salesman
problem (TSP) as a prominent NP-hard example. The input for the TSP
consists of a complete graph G = (V, E) with a set of nodes V = {1, 2, . . . , n}
and non-negative edge weights w: E → R+

0 . It is required to find a permuta-
tion of all nodes (v1, . . . , vn), such that the TSP tour length

∑n
i=2 w(vi−1, vi)+

w(vn, v1) is minimized. Without loss of generality we can assume that v1 = 1,
that is, the TSP tour starts in the fixed vertex 1.

The search space S for problem P corresponding to the dynamic program-
ming algorithm of Held and Karp [21] consists of all paths S = (v1, . . . , vi), v1 =
1 of i = 1, . . . , n nodes. S ′ is the extended search space of all sequences of
nodes up to length n (the same node may occur more than once). Given
M ⊆ V \{1} and k ∈ M , let π(k, M) denote the set of all paths of |M | + 1
vertices starting in vertex 1 then running over all nodes from M and end-
ing in vertex k. Let the vector objective function g : S → (R ∪ {∞})d,
d = (n−1)2(n−1) have components gkM(S) for all M ⊆ V \{1}, k ∈ M , equal
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to the length of path S iff S ∈ π(k, M). For all other S 6∈ π(k,M) assume
gkM(S) = ∞. The set of feasible solutions is D = ∪n

k=2π(k, V \{1}), since in
the TSP we seek a tour of length n.

S0 consists of a single element v1. The set Fi for all i consists of n − 1
functions Fv:S → S ′ that add vertex v ∈ V \{1} to the end of the given path.
For invalid states S ∈ S ′, which are characterized by not being Hamiltonian
paths on their vertex sets, the mapping Hi(S) computes 1 and 0 otherwise.

In view of the definition of objective g, the dominance relation is formu-
lated as follows. S ¹dom S ′ if and only if S and S ′ are Hamiltonian paths on
the same ground set with the same end vertex k and path S ′ is not longer
than S. States from different sets π(k, M) are not comparable. Conditions
C.1 and C.2 are verified straightforwardly.

Substituting these components into Algorithm 1, we get almost the whole
well-known dynamic programming algorithm of Held and Karp [21], except
for the last step where the optimal tour is constructed from the optimal
Hamiltonian paths.

Algorithm 1 initializes the states of the dynamic program with paths
(1, v) for all v ∈ V \ {1}. In each subsequent iteration i, the algorithm takes
each partial solution S obtained in the preceding iteration and checks for
every application of the state transition function F (S) with F ∈ Fi whether
Hi(F (S)) is a feasible partial solution that is non-dominated in Ti. If so, then
F (S) is added to the set Ti of new partial solutions by replacing dominated
partial solutions S ′ defined on the same ground set with the same end vertex
of the Hamiltonian path.

What remains to do after completion of the DP algorithm with Pareto-
optimal set is to output the Pareto-optimal solution minimizing the criterion
gk,V \{1}(S) + w(k, 1), k ∈ V \{1}, which is now easy to find. Here using
appropriate data structures one gets θF = Θ(1), θH = Θ(1), θ¹ = Θ(1)
and |Ti| = i

(
n−1

i

)
, |Fi| = n − 1 for all i = 1, . . . , n, thus the observation

following (4) leads to the time complexity bound Θ(n22n).

Knapsack Problem. Another well-known NP-hard combinatorial optimiza-
tion problem that can be solved by dynamic programming is the knapsack
problem. The input for the knapsack problem consists of n items where each
item i has an associated integer weight wi > 0 and profit pi > 0, 1 ≤ i ≤ n.
Additionally a weight bound W is given. The goal is to determine an item
selection K ⊆ {1, . . . , n} that maximizes the profit

∑
i∈K pi, subject to the

condition
∑

i∈K wi ≤ W .
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We fit the problem into the above framework assuming that each state
S = (s1, s2) ∈ Si, i = 1, . . . , n, encodes a partial solution for the first i
items, where coordinate s1 stands for the weight of a partial solution and s2

is its profit. The initial set S0 consists of a single element (0, 0) encoding a
selection of no items.

The pseudo-Boolean vector function g:S → RW defines W criteria

gw(S) :=

{
s2 if s1 = w
0 otherwise

, w = 0, . . . , W, (5)

that have to be maximized. This implies the dominance relation ¹dom such
that S ¹dom S ′ iff s1 = s′1 and s2 ≤ s′2, where S = (s1, s2), S ′ = (s′1, s

′
2).

The set Fi consists of two functions: id and Fi(s1, s2) = (s1 +wi, s2 + pi).
Here Fi corresponds to adding the i-th item to the partial solution, and id
corresponds to skipping this item. A new state S = (s1, s2) is accepted if it
does not violate the weight limit, i. e. Hi(S) ≤ 0, where Hi(S) = s1 −W .

The conditions C.1 and C.2 are straightforwardly verified. To obtain an
optimal solution for the knapsack problem it suffices to select the Pareto-
optimal state with a maximal component s2 from Sn.

To reduce the comparison time θ¹ we can store the states of the DP in
a (W × n)-matrix. An element in row w, w = 1, . . . , W , and column i, i =
1, . . . , n, holds the best value s2 obtained so far on states S = (s1, s2) ∈ Ti

with s1 = w. Then θ¹ is a constant and the worst-case runtime of the
explained DP algorithm is O(n ·W ) since

∑n
i=1 |Ti−1| ≤ nW .

Single Source Shortest Path Problem. A classical problem that also fits into
the DP framework is the single source shortest path problem (SSSP). Given
an undirected connected graph G = (V,E), |V | = n and positive edge weights
w: E → R+, the task is to find shortest paths from a selected source vertex
s ∈ V to all other vertices.

The search space S is a set of all paths in G with an end-point s. The set
of feasible solutions D is equal to S.

Since adding a vertex to a path may result in a sequence of vertices that
do not constitute a path in G, we extend the search space to the set S ′
of all sequences of vertices of length at most n with an end-point s. The
set S0 of initial solutions is just a single vertex s. Now for all i, we define
Fi := {Fv | v ∈ V } ∪ {id}, where Fv:S → S ′ is the mapping adding the
vertex v to a sequence of vertices. Hi(S) = −1 if S is a path in G with an
end-point s, and 1 if not.
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Let the vector objective function g have d = n components gv(S) for all
v ∈ V , equal to the length of path S iff S connects s to v, otherwise assume
gv(S) = ∞. This implies that S ¹dom S ′ if and only if the paths S and S ′

connect s to the same vertex and S ′ is not longer than S.
The resulting DP algorithm has θF = Θ(1), θH = Θ(1), θ¹ = Θ(1) and

|Ti−1| = Θ(n), |Fi| = Θ(n) for all i = 1, . . . , n, thus (4) gives the time
complexity bound O(n3). The well-known Dijkstra’s algorithm has O(n2)
time bound, but in that algorithm only one transition mapping is applied in
each phase (attaching the closest vertex to the set of already reached ones),
and such a problem-specific DP scheme is not considered here.

All-Pairs Shortest Path Problem. Finally, let us consider the all-pairs short-
est path (APSP) problem, which has the same input as the SSSP, except
that no source vertex is given, and the goal is to find for each pair (u, v) of
vertices a shortest path connecting them.

A basic observation is that sub-paths of shortest paths are shortest paths
again. Hence a shortest path connecting u and v can be obtained from
appending the edge (x, v), where x is a neighbor of v, to a shortest path
from u to x. This allows a very natural DP formulation as described for
problem P .

For the APSP, the search space S naturally is the set of all paths in G,
and the set D of feasible solutions consists of collections of paths, where for
each pair of vertices there is one path connecting them.

We model paths via finite sequences of vertices, and do not allow cycles.
Since adding a vertex to a path may create a sequence of vertices which does
not correspond to a path in G, let us extend this search space to the set S ′ of
all sequences of vertices of length at most n. The set S0 of initial solutions is
the set of all paths of length 0, that is, of all sequences consisting of a single
vertex. Now for all i, we define Fi := {Fv | v ∈ V }∪ {id}, where Fv:S ′ → S ′
is the mapping adding the vertex v to a sequence of vertices. To exclude
invalid solutions, let us define Hi(S) to be −1 if S is a path in G, and 1 if
not.

It remains to define when one state dominates another. Let πij denote
the set of all paths starting in vertex i and ending in vertex j. Let the vector
objective function g : S → (R ∪ {∞})d, d = n2 have components gij(S) for
all i, j ∈ V , equal to the length of path S iff S ∈ πij. For all other S 6∈ πij

assume gij(S) = ∞. This implies that S ¹dom S ′ if and only if the paths S
and S ′ connect the same two vertices and S ′ is not longer than S.
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Since the length of the path arising from extending an existing path by
an edge depends monotonically on the length of the existing path, conditions
C.1 and C.2 hold. So, in view of Proposition 1, any set Ti contains a path
for each pair of vertices (and only one such path). Thus, Tn is a subset of D
and contains a shortest path for any pair of vertices.

The resulting algorithm following the dynamic programming approach
now does the following. It starts with all paths of length zero as solution
set S0. It then repeats n times the following. For each path in the solution
set and each vertex, it appends the vertex to the path. If the resulting path
dominates an existing solution with the same end vertices, it replaces the
latter. Here θF = Θ(1), θH = Θ(1), θ¹ = Θ(1) and |Ti| = O(n2), |Fi| = O(n)
for all i = 1, . . . , n, thus (4) gives the time complexity bound O(n4). Note
that the well-known Floyd-Warshall algorithm (see e.g. [7], Chapter 25) has
O(n3) time bound, but in that algorithm each transition mapping combines
two states (paths), and such an option is not considered in this paper.

3. Evolutionary Algorithms

In the following, we show how results of dynamic programming can be
attained by evolutionary algorithms. To this aim, we state a general formu-
lation of such an evolutionary algorithm and then describe how the different
components have to be designed.

3.1. Framework for Evolutionary Algorithms

An evolutionary algorithm consists of different generic modules, which
have to be made precise by the user to best fit to the problem. Experi-
mental practice, but also some theoretical work (see e. g. [10, 11, 12, 29]),
demonstrate that the right choice of representation, variation operators, and
selection method is crucial for the success of such algorithms.

We assume again that an instance of problem P is given by a multi-
objective function g that has to be optimized. We consider simple evolution-
ary algorithms that consist of the following components.

We use S ′EA := {0, . . . , n}×S ′ as the phenotype space and call its elements
individuals. The algorithm (see Algorithm 2) starts with an initial population
of individuals P0. During the optimization the evolutionary algorithm uses
a selection operator sel(·) and a mutation operator mut(·) to create new
individuals. The d-dimensional objective function together with a partial
order ¹ on Rd induce a partial quasi-order ¹EA on the phenotype space,
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Algorithm 2 Evolutionary Algorithm for P

1: P ← ∅
2: for I ∈ P0 do
3: if @I ′ ∈ P : I ≺EA I ′ then
4: P ← (P \ {I ′ ∈ P | I ′ ≺EA I}) ∪ {I}
5: end if
6: end for
7: loop
8: I ← mut(sel(P))
9: if @I ′ ∈ P : I ≺EA I ′ then

10: P ← (P \ {I ′ ∈ P | I ′ ≺EA I}) ∪ {I}
11: end if
12: end loop
13: return {outEA(I) | I = (i, S) ∈ P , S ∈ D}

which guides the search. After the termination of the EA, an output function
outEA(·) is utilized to map the individuals in the last population to search
points from the DP search space.

3.2. Defining the Modules

We now consider how the different modules of the evolutionary algorithm
have to be implemented so that it can carry out dynamic programming. To do
this, we relate the modules to the different components of a DP algorithm.
Consider a problem P given by a set of feasible solutions D and a multi-
objective function g that can be solved by a dynamic programming approach.
The EA works with the following setting.

The initial population is P0 = {0}×S0 where S0 is the initial state space
of the DP algorithm. The selection operator sel(·) chooses an individual
I ∈ P the following way. First it chooses i ≤ n − 1 uniformly from the set
of phases which are represented in the current population i. e. from the set
{k : k ≤ n−1, ∃(k, S) ∈ P}. After this, selection chooses I uniformly among
the individuals of the form (i, S) in the current population.

For an individual (i, S), the mutation operator mut(·) chooses a state
transition function F ∈ Fi+1 uniformly at random and sets mut((i, S)) =
(i + 1, F (S)).

We incorporate a partial order ¹EA into the EA to guide the search. This
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relation is defined as follows:

(i, S) ¹EA (i′, S ′) ⇔ (i = i′ and S ¹dom S ′) or Hi(S) > 0. (6)

Finally, we utilize the output function outEA((i, S)) = S to remove the ad-
ditional information at the end of a run of the EA. That is, we remove the
information that was used to store the number of a certain round of the un-
derlying dynamic program and transform an individual into a search point
for the problem P .

Note that the description of the Algorithm 2 does not employ the notion of
the fitness function, although an appropriate multi-objective fitness function
may be defined for compatibility with the standard EA terminology.

Finally, note that we do not discuss the solutions encoding in our EA
because it is not essential for the analysis. However, it may be worth men-
tioning, when the biological analogy is considered. Here each of the genes
Ai, i = 1, . . . , n would define the DP transition mapping from a set Fi, and
a composition of these mappings would yield the DP state represented by
the individual. One of the possible options of each gene is “undefined”, and
the mutation operator modifies the first gene which is still “undefined” in
the parent individual. A discussion of genetic mechanisms corresponding to
the proposed mutation in a biological system is provided in Appendix B.

3.3. Runtime of the Evolutionary Algorithm

Our goal is to show that the evolutionary algorithm solves the problem P
efficiently if the dynamic programming approach does. To measure the time
the evolutionary algorithm needs to compute a Pareto-optimal set for prob-
lem P , one would analyze the expected number of fitness evaluations to come
up with a Pareto-optimal set, when it is non-empty. This is also called the
expected optimization time, which is a common measure for analyzing the
runtime behavior of evolutionary algorithms. The proposed EA does not use
the multi-objective fitness function explicitly, but given enough memory, it
may be implemented so that every individual constructed and evaluated in
Lines 3 and 4 or in Lines 8-11 requires at most one evaluation of the objective
function g. Thus, we can define the optimization time for Algorithm 2 as
|S0| plus the number of iterations of the main loop (Lines 8-11) required to
come up with a Pareto-optimal set. Analogous parameter of a DP algorithm
is the number of states computed during its execution.

The next theorem relates the expected optimization time of the EA to
the number of states computed during the execution of the corresponding
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DP algorithm. In what follows it will be convenient to denote the cardinality
of the set of states produced after completion of the DP algorithm by |DP |,
i. e. |DP | := ∑n

i=0 |Ti|. Note that |DP | is a well-defined value since the sizes
|Ti| are unique according to Proposition 2.

Theorem 1. Let a DP be defined as in Algorithm 1 and an EA defined as
in Algorithm 2 with ¹EA relation defined by (6). Then the number of states
computed during the execution of the DP algorithm is |S0|+

∑n
i=1 |Fi| · |Ti−1|,

and the EA has an expected optimization time of

O

(
|S0|+ n · log |DP | ·

n−1∑
i=0

|Ti| · |Fi+1|
)

.

Proof. Estimation of the number of states computed during the execu-
tion of the DP algorithm is straightforward.

Assume that the optimization process works in stages 1 ≤ i ≤ n, whereas
stage i+1 starts after the stage i has been finished. We define that a stage i
finishes when for every state S ∈ Ti there exists an individual (i, S ′) ∈ P
with S ′ dominating S. Here and below in this proof, by Ti, i = 0, . . . , n,
we denote the corresponding sets computed in Algorithm 1. Note that after
completion of a stage i, the subset of individuals of a form (i, S) in population
P does not change in the subsequent iterations of the EA. Let T ′

i denote the
set of states of these individuals after completion of stage i, i = 0, . . . , n. By
the definition of Algorithm 2, the sequence T ′

i , i = 0, . . . , n satisfies (2), and
therefore |T ′

i | = |Ti|, i = 0, . . . , n in view of Proposition 2.
Let ξi be the random variable denoting the number of iterations since

stage i − 1 is finished, until stage i is completed. Then the expected opti-
mization time is given by |S0|+ E[ξ] with ξ = ξ1 + . . . + ξn.

Any state S ∈ Ti+1 is computed in Algorithm 1 by means of some function
F̃ ∈ Fi+1, when it is applied to some state S̃ ∈ Ti. Thus, in stage i + 1 of
the EA during mutation the same transition function F̃ may be applied to
some individual I ′ = (i, S ′), such that S̃ ¹dom S ′. After this mutation, in
view of conditions C.1 and C.2, the population P will contain an individual
I ′′ = (i + 1, S ′′) with S ′′ such that S ¹dom F̃ (S ′) ¹dom S ′′.

Consider any iteration of the EA at stage i+1. Let t denote the number of
such states from Ti+1 that are already dominated by a state of some individual
in P . Then there should be |Ti+1| − t new individuals of the form (i + 1, S)
to be added into P to complete stage i+1 (recall that |T ′

i+1| = |Ti+1|). The
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probability to produce an individual (i, S ′) where S ′ dominates a previously
non-dominated state from Ti+1 is no less than (|Ti+1| − t)/(n|Ti| · |Fi+1|)
with an expected waiting time of at most (n|Ti| · |Fi+1|)/(|Ti+1| − t) for this
geometrically distributed variable. The expected waiting time to finish stage
i + 1 is thus bounded by

E[ξi+1] ≤
|Ti+1|∑
t=1

n|Ti| · |Fi+1|
t

= n|Ti| · |Fi+1| · H|Ti+1|,

with Hk being the k-th harmonic number, Hk :=
∑k

i=1
1
i
.

This leads to an overall expected number of iterations

E[ξ] ≤
n−1∑
i=0

n|Ti| · |Fi+1| · H|Ti+1| ≤ n(ln |DP |+ 1) ·
n−1∑
i=0

|Ti| · |Fi+1|.

¤

A similar inspection as in Subsection 2.2 reveals that the expected runtime
of the EA is

O
(
θini + n log |DP | ·

n−1∑
i=0

(|Fi+1| · |Ti| · (θFi
+ θH + θ¹)) + θout

)
,

assuming the individuals of the population are stored in n + 1 disjoint sets
according to the first coordinate i.

As noted in Subsection 2.2, if the computation times for functions F ,
Hi and dominance checking (3) as well as execution time for Line 11 in
Algorithm 1 are constant, then θF , θH and θ¹ can be chosen equal to the
corresponding computation times. In such cases a problem that is solved
by dynamic programming Algorithm 1 in time T , will be solved by the EA
defined as in Algorithm 2 in expected time O(Tn log |DP |).

3.4. Homogeneous transitions

Some DP algorithms, like the ones for the APSP and SSSP problems, have
a specific structure which may be exploited in the EA. In this subsection we
consider the case of homogeneous transition functions where F1 ≡ . . . ≡ Fn

and H1 ≡ . . . ≡ Hn. To simplify the notation in this case we will assume
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F1 ≡ F and H1(S) ≡ H(S). Additionally, we suppose that the identical
mapping belongs to F .

The formulated assumptions imply that once some state S is obtained
in the DP algorithm, it will be copied from one phase to another, unless
some other state will dominate it. Note also that it does not matter at
what particular phase a state has been obtained – the transition functions
will produce the same images of this state. These observations motivate
a modification of the partial order ¹EA, neglecting the phase number in
comparison of individuals:

(i, S) ¹EA (i′, S ′) ⇔ S ¹dom S ′ or Hi(S) > 0. (7)

In fact, now we can skip the index i in individuals (i, S) of the EA, so in
this subsection the terms “state” and “individual” are synonyms and the
phase number i is suppressed in the notation of individuals. As the following
theorem shows, wider sets of comparable individuals in this special case allow
to reduce the population size and thus improve the performance of the EA.
Let us consider the width Wdom of partial order ¹dom, i. e. the maximum size
of a set of pairwise incomparable elements.

Theorem 2. If the transition functions are homogeneous and id ∈ F , then
the EA defined as in Algorithm 2 with the modified ¹EA relation (7) has an
expected optimization time of O(|S0|+ Wdom log(Wdom) · n|F|).

Proof. The analysis is similar to the proof of Theorem 1. Note that now
the size of population P does not exceed Wdom. We assume that |P| = Wdom

right from the start.
Let Ti be the same as in phase i of the DP algorithm, i = 0, . . . , n. Sup-

pose again that the optimization process works in stages 1 ≤ i ≤ n, whereas
stage i is assumed to be finished when for every S ∈ Ti, the population P
contains an individual S ′ such that S ¹dom S ′.

Let ξi be the number of iterations since stage i− 1 is finished, until stage
i is completed. Then the expected optimization time is given by |S0|+ E[ξ]
with ξ = ξ1 + . . . + ξn.

Any state S ∈ Ti+1 is computed in the DP algorithm by means of some
function F̃ ∈ Fi+1, when it is applied to some state S̃ ∈ Ti. Thus, in stage i+1
of the EA during mutation the same transition function F̃ may be applied
to some individual I ′ = S ′, such that S̃ ¹dom S ′. After this mutation, in
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view of conditions C.1 and C.2, the population P will contain an individual
I ′′ = S ′′ such that S ¹dom F̃ (S ′) ¹dom S ′′.

The probability of such a mutation for a particular S ∈ Ti+1 is at least
1/(|Fi+1|·|P|) ≤ 1/(|Fi+1|·Wdom). Let t denote the number of states S ∈ Ti+1

that are already dominated at stage i + 1. Then there are at least |Ti+1| − t
possibilities to add a new individual, which dominates a previously non-
dominated state from Ti+1. The probability for such a mutation is not less
than (|Ti+1| − t)/(Wdom · |Fi+1|) with an expected waiting time of at most
(Wdom · |Fi+1|)/(|Ti+1|−t) for this geometrically distributed variable. The ex-
pected waiting time to finish stage i+1 is thus E[ξi+1] ≤ Wdom ·|Fi+1|·H|Ti+1|.
But |Ti+1| ≤ Wdom because the states of Ti+1 are pairwise incomparable ac-
cording to Algorithm 1. This leads to an overall expected number of itera-
tions E[ξ] ≤ Wdom · (ln(Wdom) + 1) ·∑n−1

i=0 |Fi+1|. ¤

3.5. Examples

Now, we point out how the framework presented in this section can be
used to construct evolutionary algorithms using the examples from Section 2.

Traveling Salesman Problem. Due to Theorem 1 the expected optimization
time of the evolutionary algorithm based on the DP algorithm of Held and
Karp presented in Section 2.3 is O(n42n). This bound can be further im-
proved to O(n3 · 2n) for the EA proposed in [41].

Knapsack Problem. Consider the DP algorithm presented in Section 2.3. The
expected optimization time of the corresponding EA for the knapsack prob-
lem is O(n2 ·W · log (n ·W )) due to Theorem 1.

Single Source Shortest Path Problem. Application of Theorem 1 to the DP
algorithm for SSSP problem from Section 2.3 gives an expected optimization
time of O(n4 log (n)) for Algorithm 2.

The DP algorithm for SSSP problem has homogeneous transition func-
tions with with Wdom = n. Thus, the modified EA considered in Theorem 2
has the expected optimization time O(n3 log n). This bound can be further
improved to O(n3) for the (1+1)-EA [39].

All-Pairs Shortest Path Problem. Plugging the ideas of the DP algorithm for
APSP problem presented in Section 2.3 into the framework of Algorithm 2,
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we obtain an EA with an expected optimization time of O(n5 log (n)) due to
Theorem 1.

It has been noted, however, that the DP algorithm for APSP has homoge-
neous transition functions, each set Fi contains the identical mapping. Here
Wdom = n2, thus Theorem 2 implies that the modified EA has the expected
optimization time O(n4 log n). This algorithm can be further improved to an
EA with optimization time Θ(n4) as has been shown in [9].

4. Approximation Schemes

In this section, we demonstrate that for many single-objective discrete
optimization problems Π the above framework can be used to find feasi-
ble solutions with any desired precision. The supplementary multi-objective
problem P will be formally introduced for compatibility with the previous
sections, but it will not play a significant role here.

Throughout this section we assume that Π is an NP-optimization prob-
lem [2], x denotes the input data of an instance of Π, Solx is the set of feasible
solutions, mx : Solx → N0 is the objective function (here and below N0 de-
notes the set of non-negative integers). The optimal value of the objective
function is OPT(x) = max

y∈Solx mx(y) if Π is a maximization problem, or

OPT(x) = min
y∈Solx mx(y) in the case of minimization. To simplify presen-

tation in what follows we assume that Solx 6= ∅.
To formulate the main result of this section let us start with two standard

definitions [18].
A ρ-approximation algorithm for Π is an algorithm that for any instance x

returns a feasible solution whose objective value at most ρ times deviates
from OPT(x) (if the instance x is solvable). Such a solution is called ρ-
approximate. A fully polynomial time approximation scheme (FPTAS) for a
problem Π is a family of (1 + ε)-approximation algorithms over all factors
ε > 0 with polynomially bounded running time in problem input size |x| and
in 1/ε.

In [43] G. Woeginger proposed a very general FPTAS with an outline
similar to the DP Algorithm 1, except that the comparison of newly gener-
ated states to the former ones is modified so that the “close” states are not
kept. This modified algorithm is denoted by DP∆ in what follows (a detailed
description of DP∆ will be given in Subsection 4.1).

The state space S and its subsets Ti computed in the DP Algorithm 1 may
be exponential in problem input size, thus leading to an exponential running
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time of the DP algorithm (this holds e.g. for the Knapsack problem). The
algorithm DP∆, however, iteratively thins out the state space of the dynamic
program and substitutes the states that are “close” to each other by a single
representative, thus bringing the size of the subsets Ti down to polynomial.
This transformation is known as trimming the state space approach.

In [43], a list of conditions is presented, that guarantee the existence of an
FPTAS when there is an exact DP algorithm for a problem. If a problem Π
satisfies these conditions, it is called DP-benevolent. This class, in particu-
lar, contains the knapsack problem and different scheduling problems, e.g.
minimizing the total weighted job completion time on a constant number
of parallel machines, minimizing weighted earliness-tardiness about a com-
mon non-restrictive due date on a single machine, minimizing the weighted
number of tardy jobs etc. The definition of DP-benevolence is as follows.

The input data of Π has to be structured so that x consists of n vectors
X1, . . . , Xn ∈ Nα

0 and the components x1i, . . . , xαi of each vector Xi are given
in binary coding. The dimension α may depend on the specific problem
input.

Suppose that for a problem Π there exists a corresponding multi-objective
problem P and an exact simplified DP algorithm defined by expression (1).
This algorithm works in n phases and for each i = 1, . . . , n the set of func-
tions Fi and the function Hi do not depend on any input vectors other
than Xi. Besides that, S ⊂ S ′ = Nβ

0 , where dimension β is fixed for Π and
does not depend on a particular input x. The assumption that elements of S ′
are integer vectors will be essential in this section because each component
of a state will actually be a quantitative parameter and will be subject to
scaling. It is sometimes possible, however, to move from integer components
to reals using the approach from [5].

The reduction from Π to P , according to Section 2, implies that the
Pareto-optimal set of P can be efficiently transformed into a solution to
the problem Π. Now let us suppose additionally that any S ∈ Sn can be
mapped to some y(S) ∈ Solx and there is a function G : Nβ

0 → N0 such that
mx(y(S)) = G(S).

The assumption that the simplified DP algorithm described in Section 2
provides an exact solution to Π may be expressed formally:

OPT(x) = min{G(S) : S ∈ Sn}, (8)
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if Π is a minimization problem, or alternatively

OPT(x) = max{G(S) : S ∈ Sn}, (9)

if Π is a maximization problem.
The function y(S) is usually computed by means of a standard back-

tracking procedure (see e.g. [7], Chapter 15). A general description of such
a procedure is beyond the scope of the paper since the details of reduction
from problem Π to P are not considered here.

Suppose a degree vector D = (d1, . . . , dβ) ∈ Nβ
0 is defined for Π. Then,

given a real value ∆ > 1 we say that S = (s1, . . . , sβ) is (D, ∆)-close to
S ′ = (s′1, . . . , s

′
β), if

∆−d`s` ≤ s′` ≤ ∆d`s`, ` = 1, . . . , β.

Let us denote by L0 the set of indices 1 ≤ ` ≤ β such that d` = 0, and let
L1 = {1, . . . , β}\L0.

The main tool to exclude unpromising states in a DP-based FPTAS [43]
is the quasi-linear order ¹qua, which is an extension of a partial order ¹dom,

i. e. if S ¹dom S ′ then S ¹qua S ′ for any S, S ′ ∈ Nβ
0 . For the sake of compat-

ibility with [43], we will limit the consideration to the case where ¹dom is a
partial order, rather than a more general partial quasi-order as in Sections 2
and 3. This restriction is not significant w. r. t. applications of the frame-
work, although most likely the results of [43], as well as our results below,
hold for the partial quasi-orders as well.

At each phase i, i = 1, . . . , n, in DP∆ only those states S may be excluded
that are dominated in terms of ¹qua by one of the other obtained states S ′,
provided that S ′ is (D, ∆)-close to S.

Note that for any instance x the partial order ¹dom on the final sets
S1, . . . ,Sn may be represented by a finite number of criteria g1, . . . , gd of
a corresponding instance of the problem P so that the Pareto-dominance
relation is equivalent to ¹dom on this set.

A problem Π is called DP-benevolent if besides C.1 and C.2, the following
conditions C.1′,C.2′,C.3 and C.4 hold:

Condition C.1′. For any ∆ > 1, S, S ′ ∈ Nβ
0 and F ∈ Fi, i = 1, . . . , n, if S

is (D, ∆)-close to S ′ and S ¹qua S ′, then either F (S) ¹qua F (S ′) and F (S)
is (D, ∆)-close to F (S ′), or F (S) ¹dom F (S ′).
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Condition C.2′. For any ∆ > 1, S, S ′ ∈ Nβ
0 and i = 1, . . . , n, if S is

(D, ∆)-close to S ′ and S ¹qua S ′, then Hi(S
′) ≤ Hi(S).

Condition C.3. A value γ ∈ N0 exists, depending only on G and D, such
that for any ∆ > 1 and S, S ′ ∈ Nβ

0 ,

(i) if S is (D, ∆)-close to S ′ and S ¹qua S ′, then G(S ′) ≤ ∆γG(S) in
the case of minimization, and ∆−γG(S) ≤ G(S ′) in the case of maximization
problem,

(ii) if S ¹dom S ′, then G(S ′) ≤ G(S) in the case of minimization, and
G(S ′) ≥ G(S) in the case of maximization problem.

Condition C.4.
(i) The functions F ∈ Fi, Hi, i = 1, . . . , n and G, as well as the relation

¹qua are computable in time polynomially bounded in the input length.
(ii) |Fi|, i = 1, . . . , n is polynomially bounded in input length.
(iii) S0 is computable in time polynomially bounded in input length.
(iv) A polynomial π1(n, log2 |x|) exists, such that all coordinates of any

element S ∈ Si, i = 1, . . . , n are integer numbers bounded by eπ1(n,log2 |x|).
Besides that, for all ` ∈ L0, the cardinality of the set of values that such a
coordinate can take |{s` : (s1, . . . , s`, . . . , sβ) ∈ Si}| is bounded by a polyno-
mial π2(n, log2 |x|).

Example: knapsack problem. We can verify the DP-benevolence conditions
for the knapsack problem as a simple illustrating example. Let the problem
input, the DP states and the sets of mappings Fi, i = 1, . . . , n, as well
as functions Hi be defined as in Section 2.3. Besides that, G(S) ≡ s2 for
all S = (s1, s2) ∈ Sn and the degree vector is D = (1, 1).

A proper linear quasi-order ¹qua that suits the partial order ¹dom defined
in Section 2.3 for the knapsack problem is not known to us. Instead, we can
consider the following relations ¹qua and ¹dom: let S ¹qua S ′ iff s1 ≥ s′1,
where S = (s1, s2), S ′ = (s′1, s

′
2) and let ¹dom be the trivial partial order,

i. e. S ¹dom S ′ iff S = S ′. (For an example of a DP-benevolent problem with
non-trivial ¹dom see the problem of minimizing total late work on a single
machine [43].)

The statements in Conditions C.1, C.2, and C.3(ii) are fulfilled since
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¹dom is trivial. The function G(s1, s2) ≡ s2 satisfies Condition C.3(i), which
can be verified straightforwardly, assuming γ = 1. To see that Condition
C.4 holds, consider a polynomial π1(n, log2 |x|) = ln(2|x|), which ensures that
max{s` ∈ Si|` = 1, 2, i = 1, . . . , n} ≤ max{∑n

i=1 pi,W} ≤ 2|x| = eπ1(n,log2 |x|).
Conditions C.1’ and C.2’ hold because the functions Fi, id and Hi at any

phase i just sum the arguments with given non-negative constants. Indeed,
consider e.g. the function Fi(s1, s2) = (s1 + wi, s2 + pi). Here for any ∆ > 1,
if s`/∆ ≤ s′` ≤ ∆s`, ` = 1, 2, then (s1 + wi)/∆ ≤ s′1 + wi ≤ ∆(s1 + wi) and
(s2 + pi)/∆ ≤ s′2 + pi ≤ ∆(s2 + pi), therefore Fi(s1, s2) is (D, ∆)-close to
Fi(s

′
1, s

′
2). Besides that, adding a constant to s1 does not change the order

¹qua. The functions id and Hi are treated analogously.
The other problems considered in Section 2.3 either do not admit FPTAS

unless P=NP (the TSP), or they are solvable in time which is polynomially
bounded in the input length and thus do not require FPTAS (the SSSP and
the APSP problems).

4.1. Fully polynomial-time approximation scheme

To identify subsets of states which are (D, ∆)-close to each other, the
algorithm DP∆ employs a partition of the set of states into ∆-boxes (de-
fined below). This partition allows to discard “close” states analogously to
discarding of (1+ε)-dominated solutions which is used in multi-objective op-
timization for approximation of Pareto-set (see e.g. [22]). The main difference
is that in our case the states are compared on the basis of their components,
rather than the components of the vector of objectives. Note that usage of a
quasi-linear order ¹qua in DP∆ will make (D, ∆)-closeness only a necessary
condition for discarding states from consideration.

Let L be a sufficiently large value, chosen for x and for any required
precision ε ∈ (0, 1) (a specific definition of L will be discussed later). To
describe the algorithm DP∆ let us consider a family of parallelepipeds that
constitute a partition of the set B(L, ∆) = Nβ

0 ∩ [0, ∆L]β:

{B(k1,...,kβ) : k` = 0, . . . , L, ` = 1, . . . , β},

where B(k1,...,kβ) contains all integer points S = (s1, . . . , sβ) ∈ Nβ
0 , such that:

s` ∈




0, if k` = 0,
[∆k`−1, ∆k` − 1], if 0 < k` < L,
[∆k`−1, ∆k` ], if k` = L,

(10)
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Algorithm 3 DP∆ for Π
1: T0 ← S0

2: for i = 1 to n do
3: Ti ← ∅
4: for S ∈ Ti−1 and F ∈ Fi do
5: let B(k1,...,kβ) be the ∆-box containing F (S)
6: if Hi(F (S)) ≤ 0 and @S ′ ∈ Ti ∩ B(k1,...,kβ): F (S) ¹qua S ′ then
7: Ti ← (Ti \ {S ′ ∈ Ti ∩ B(k1,...,kβ) | S ′ ≺qua F (S)}) ∪ {F (S)}
8: end if
9: end for

10: end for
11: find S∗ ∈ Tn such that

G(S∗) =

{
min{G(S) : S ∈ Tn} in case of minimization,
max{G(S) : S ∈ Tn} in case of maximization

12: return y(S∗)

for all ` ∈ L1 and
s` = k`,

for all ` ∈ L0. Thus defined parallelepipeds are called ∆-boxes below.

Algorithm 3 was suggested in [43] where it was proven to constitute an
FPTAS with ∆ and L chosen as follows

∆ = 1 +
ε

2γn
, (11)

L =

⌈
π1(n, log2 |x|)

ln ∆

⌉
. (12)

Equations (11) and (12) ensure L is polynomially bounded in size of the
input and in 1/ε.

4.2. Fully Polynomial-Time Randomized Approximation Scheme

A family of randomized algorithms over all factors 0 < ε < 1 with polyno-
mially bounded running times in problem input size |x| and in 1/ε that com-
putes (1 + ε)-approximate solutions with probability at least 3/4 is called a
fully polynomial-time randomized approximation scheme (FPRAS) [24]. The
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constant 3/4 in the definition of FPRAS for optimization problems may be
replaced by any other constant from the interval (0,1).

The DP-based EA framework proposed in Section 3 may be modified to
obtain an evolutionary FPRAS for DP-benevolent problems.

Now a new relation ¹∆ is defined to substitute ¹dom in Algorithm 2. Let
us introduce the following relation: (i, S) ¹∆ (i′, S ′), iff Hi(S) > 0 or the
following three conditions hold:

a) i = i′

b) there exist such k1, . . . , kβ that S, S ′ ∈ B(k1,...,kβ)

c) S ¹qua S ′.

The EA using this relation is denoted EA∆ in what follows.
For an arbitrary S ∈ Si let θ(i, S), i = 1, . . . , n, be the first iteration

number, when an individual (i, T ) was added into population, such that:

(i) T is (D, ∆i)-close to S and

(ii) S ¹qua T .

In all iterations following θ(i, S) the population will contain an individual T
that satisfies the conditions (i) and (ii) as well.

The following lemma indicates that for any non-dominated S ∈ Si, in a
number of iterations that is on average polynomially bounded in |x| and 1/ε,
an individual (i, T ) will be obtained such that T is (D, ∆i)-close to S and
S ¹qua T . The proofs of the lemma and the theorem below are provided
in [16] but since this publication might be difficult to access, we reproduce
the proofs here.

Lemma 1. Let Π be DP-benevolent with dimension β. Then for any stage
i = 0, . . . , n, any non-dominated state S in Si and L chosen as defined in
Equation 12 it holds that

E[θ(i, S)] ≤ n(Lπ2(n, log2 |x|))β ·
i∑

k=1

|Fk|.
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Proof. Let us use induction on i. For i = 0 the statement holds trivially.
Consider any state S which is non-dominated in Si. Suppose i > 0 and the
statement holds for i− 1.

Lemma 4.7 in [43] implies that there exists a state S# non-dominated
in Si−1 and a mapping F# ∈ Fi, such that F#(S#) = S. Note that the
induction hypothesis gives an upper bound on expectation of θ(i − 1, S#),
which is the expected number of iterations until an individual (i− 1, T#) is
obtained, such that T# is (D, ∆i−1)-close to S# and S# ¹qua T#. Again,
let the mutation that applies F# to an individual (i − 1, T#) be called a
successful mutation.

In view of C.2′ condition,

Hi(F
#(T#)) ≤ Hi(S) ≤ 0,

and by C.1 and C.1′, either (a) F#(T#) is (D, ∆i−1)-close to S and S ¹qua

F#(T#), or (b) S ¹dom F#(T#).
In case (a), after a successful mutation, the population will contain the

element (i, F#(T#)), or some other element (i, T ′) such that T ′ belongs to the
∆-box B(k1,...,kβ), which also contains F#(T#) and besides this F#(T#) ¹qua

T ′. After this mutation the population will contain an individual (i, T ), such
that T is (D, ∆)-close to F#(T#) and F#(T#) ¹qua T . Now since F#(T#)
is (D, ∆i−1)-close to S, by the definition of closeness, T is (D, ∆s)-close to
S. Besides that, S ¹qua F#(T#) ¹qua T , consequently, S ¹qua T . Thus, in
case (a), successful mutation ensures presence of the required representative
for S in population on stage i.

In case (b), a successful mutation will yield the individual (i, S), since S
is a non-dominated state, and S ¹dom F#(T#). After such a mutation, the
population will contain an individual (i, T ), such that T is (D, ∆)-close to S
and S ¹qua T . Obviously, T is also (D, ∆i)-close to S then.

To complete the proof it remains to estimate the expected number of
mutation attempts θ∗ until a successful mutation occurs, conditioned that
an individual a# = (i− 1, T#) belongs to the current population P . Note
that the probability of a successful mutation is

p∗ = (n · |{(i− 1, S ′) ∈ P}| · |Fi|)−1
,

at the same time,

|P| =
n∑

i′=1

|{(i′, S ′) ∈ P}| ≤
n∑

i′=1

|{(k1, . . . , kβ) : B(k1,...,kβ) ∩ Si′ 6= ∅}|. (13)
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Consider a single term in the right-hand side of inequality (13) with any
fixed i′. For each ` ∈ L1 the index k` may take at most L different values.
Besides that, in view of condition C4 (iv), for each `′ ∈ L0 the coordinate s`′

characterizing the states from the set Si′ may take at most π2(n, log2 |x|)
values.

Thus, the right-hand side of inequality (13) can not exceed

nL|L1|π2(n, log2 |x|)|L0| ≤ n(Lπ2(n, log2 |x|))β.

The statement of the lemma for phase i follows from the fact that E[θ(i, S)] =
E[θ(i− 1, T#)] + 1/p∗. ¤

The bound on E[θ(i, S)] obtained in Lemma 1 is used to choose the
stopping criterion for the algorithm EA∆. Let the algorithm terminate after

τ = 4n(Lπ2(n, log2 |x|))β

n∑
i=1

|Fi| (14)

iterations.

Theorem 3. If the problem Π is DP-benevolent, then the family of algo-
rithms EA∆ where ∆ and L are chosen according to (11) and (12), using the
stopping criterion (14) gives an FPRAS.

Proof. In view of (8) and C3 (ii), there exists a non-dominated state
S∗ ∈ Sn, such that OPT (x) = G(S∗). By Lemma 1, on average within at
most n(Lπ2(n, log2 |x|))β ·∑n

i=1 |Fi| iterations of EA∆, a population will be
computed, containing an individual (n, T ∗), such that T ∗ is (D, ∆n)-close to
S∗ and S∗ ¹qua T ∗.

Let us first consider the case where Π is a minimization problem. By
condition C3 (i):

G(T ∗) ≤ ∆γnG(S∗) =

(
1 +

ε

2γn

)γn

OPT (x) ≤ (1 + ε)OPT (x).

The latter inequality follows from the observations that γn ≥ 1, (1 + ε
2γn

)γn

is a convex function in ε on the interval ε ∈ [0, 2], and the indicated inequal-
ity holds for both endpoints of this interval. In the case of maximization
problem Π analogously we obtain G(T ∗) ≥ (1 + ε)−1OPT (x).
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Finally, by means of backtracking, a (1 + ε)-approximate solution y(T ∗)
may be computed efficiently.

Execution of EA∆ with stopping criterion (14), according to the Markov
inequality, does not yield a (1 + ε)-approximate solution with probability at
most 1/4.

Finally, by condition C.4, the runtime of each iteration of the EA∆ is poly-
nomially bounded in the input length and in 1/ε. Summing up the observed
facts, we conclude that the proposed family of the algorithms constitutes an
FPRAS. ¤

5. Conclusions

We have examined how to choose a representation for an evolutionary al-
gorithm such that it obtains the ability to carry out dynamic programming.
Based on a general framework for dynamic programming we have given a
framework for evolutionary algorithms that have a dynamic programming
ability and analyzed the optimization time of such an algorithm depend-
ing on the corresponding dynamic programming approach. By considering
well-known combinatorial optimization problems, we have shown that our
framework captures most of the known DP-based evolutionary algorithms
and allows to treat other problems.
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Appendix A. Bellman Principle for Single-Objective Problems

In this appendix, we describe the Bellman optimality principle in terms
of the DP method defined by recurrence (1). Consider a single-objective
maximization problem Π. Let 2 ≤ β ∈ N be a constant and S ⊆ Rβ, so that
the first component s1 of a state S ∈ S characterizes a quality of the state
in some sense.
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The Bellman principle applies to a DP algorithm for Π if the following
statement holds. Suppose that starting from some state S∗0 ∈ S0, a sequence
of “decisions” F1 ∈ F1, . . . , Fn ∈ Fn leads to an optimal solution for Π. Let us
denote S∗i = Fi(Fi−1(...F1(S

∗
0)...)) ∈ Si, i = 1, . . . , n. Then for any particular

state S∗i = (s∗1i, . . . , s
∗
βi), the subsequence F1, . . . , Fi is an optimal policy for

reaching the set of states coinciding with S∗i in components s2, . . . , sβ. By
an optimal policy here we mean that for any sequence F ′

1 ∈ F1, . . . , F
′
i ∈ Fi

starting with some S ′0 ∈ S0, such that S ′k = F ′
k(F

′
k−1(...F

′
1(S

′
0)...)) ∈ Sk, k =

1, . . . , i, and S ′i = (s′1i, s
∗
2i, . . . , s

∗
βi), holds s′1i ≤ s∗1i.

If the Bellman principle applies to a DP algorithm, then for any s2, . . . , sβ

it is possible to keep only one state which dominates all states in the subset
{S ′ ∈ Si : s′2 = s2, . . . , s

′
β = sβ} without a risk to loose optimality of the

DP algorithm result.

Appendix B. Genetic Mechanisms Corresponding to the Muta-
tion Proposed in the EA

The mutation operator proposed in the EA in Section 3.2 is a special case
of the point mutation, where a gene Ai subject to change is selected as the
first gene which has never been mutated so far (i. e. the first “undefined”
gene). Such type of mutation may be imagined in a biological system as
follows.

Suppose that for each phase i, i = 1, . . . , n, there is a “controlling”
gene Bi. The required localization of mutations in gene Ai, when Ai is
the first ”undefined” gene, is caused by insertion of some mobile DNA se-
quence Ci (e.g. a transposon, see [40]), that can enter the locus of gene Ai,
and only this locus. We can additionally assume that a mobile element Ci

is produced if and only if the gene Bi is active (i. e. Bi is subject to tran-
scription in the parent individual). Besides that, we can assume that gene Ai

in the “undefined” condition is silencing the transcription of gene Bi+1, but
any mutated state of gene Ai activates the transcription of gene Bi+1 and
silences the gene Bi.

Then one can assume that in the i-th generation, i = 1, . . . , n, only the
gene Bi is active among B1, . . . , Bn, provided that initially only the gene B1

was active. At the same time, in the i-th generation, i = 1, . . . , n, the
insertion mutations occur only in the gene Ai.

In nature, an example of a mutually exclusive genes activation is observed
in malaria parasite Plasmodium falciparum. The transitions from one variant

31



of a gene to another one depend on the currently active gene variant [23].
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