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Abstract. In this paper, we study the computational complexity of the
following subset search problem in a set of vectors. Given a set of N
Euclidean q-dimensional vectors and an integer M , choose a subset of at
least M vectors minimizing the Euclidean norm of the arithmetic mean
of chosen vectors. This problem is induced, in particular, by a problem
of clustering a set of points into two clusters where one of the clusters
consists of points with a mean close to a given point. Without loss of
generality the given point may be assumed to be the origin.
We show that the considered problem is NP-hard in the strong sense
and it does not admit any approximation algorithm with guaranteed
performance, unless P=NP. An exact algorithm with pseudo-polynomial
time complexity is proposed for the special case of the problem, where
the dimension q of the space is bounded from above by a constant and
the input data are integer.
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1 Introduction

In this paper, we study a discrete extremal problem of searching a subset of
vectors with shortest average under a cardinality restriction. The goal of the
study is finding out the computational complexity of this problem and its ap-
proximability. The research is motivated by significance of the problem in many
applications (see below).

The Subset with the Shortest Average under Cardinality Restriction (SSA)
problem is formulated as follows.

Given: a set Y = {y1, . . . , yN} of points (vectors) from Rq and a positive
integer M .

Find : a subset C ⊆ Y such that |C| ≥ M and

1
|C|
‖

∑
y∈C

y‖ → min, (1)



where ‖ · ‖ denotes the Euclidean norm.
Note that the above formulation involves a norm of a sum of elements of the

desired subset C. Therefore this problem may be viewed as an optimal summation
problem and has an obvious geometrical interpretation. At the same time, this
problem may be considered as a problem of clustering a set of points into two
clusters (C and Y \ C) when one of the clusters consists of points with a mean
close to the origin. Obviously, given any other vector instead of the origin, the
problem can be easily reduced to the mentioned above. This type of 2-clustering
problems can be used for censoring the input data, if the expectation of an
observed variable is known in advance.

Also SSA problem has applications in the diverse and multidisciplinary area
of Data Mining (see e.g. [1,2],[13]). One of the central problems in this area
consists in approximation of data by some mathematical model which allows to
interpret the data adequately and explain their emergence. In particular, such
a model may be expressed as a statistical hypothesis that the input data Y are
sampled from a mixture of several distributions and at least M observations cor-
respond to a distribution with zero mean. First one can solve SSA problem with
the given data, after that the classical methods of statistical hypothesis testing
may be applied to the obtained SSA solution and finally the data interpretation
may be done on the basis of hypothesis testing results.

Another area where the SSA problem emerges is the trading hubs construc-
tion for electricity markets under locational marginal pricing [4].

It can be seen from the form of the optimization criterion (1) that the problem
under consideration may be easily interpreted as a version of important classical
problems in physics that ask for a balanced subset of forces (vectors). Besides
that, if the given points of the Euclidean space correspond to people so that the
coordinates of points are equal to some characteristics of these people (w.r.t.
some matters), then the formulated problem may be treated as a problem of
finding a balanced group (a subset) of people.

The formulation of SSA problem is resembling the formulation of optimal
summation problems with a maximization criterion which first arose in studying
the problem of noise-proof off-line search for an unknown repeating fragment in
a discrete signal [17]. The maximization criterion in [17] has a different scaling
compared to (1):

1
|C|

∥∥∥∑
y∈C

y
∥∥∥2

→ max . (2)

The strong NP-hardness of the maximization problems with criterion (1) was
proved in [3],[9], [10],[22,23] under different restrictions on the cardinality of the
desired set. These problems, their generalizations and special cases were also
studied in [5,6],[8], [10,11,12], [14,15,16], [18,19,20,21], [24]. In particular, it was
proved in [11],[20] that in the case of the fixed dimension q of the space, the
problems with criterion (2) are polynomially solvable in time O(N2q).

The complexity and approximability status of SSA problem was not com-
pletely known up to now. An equivalent single hub selection problem was studied
in [4] where it was shown to be NP-hard in the 2-dimensional Euclidean space.



A modification of the single hub selection problem problem, where the size of
the sought subset C is given in the input, was shown to be strongly NP-hard
in [25]. SSA problem may be transformed to O(N) instances of the problem
from [25] but this does not help to identify the complexity status of SSA in the
general case. In the next section, we provide a detailed study of computational
complexity of the SSA problem and its approximability.

2 Analysis of Computational Complexity and
Approximability

Note that in the general formulation of the SSA problem given above, the di-
mension q of the space is a part of the input data. The following theorem states
the complexity status of this problem.

Theorem 1. SSA problem is NP-hard in the strong sense.

Proof. Let us prove the strong NP-completeness of the equivalent decision prob-
lem, which implies the strong NP-hardness (see e.g. [7]). Let us formulate SSA
problem in the form of decision problem.

Instance: A set Y = {y1, . . . , yN} of points from Rq, a positive integer K and
a positive integer M .

Question: Is there a nonempty subset C ⊆ Y of size at least M , such that
the value of objective function (1) is at most K?

SSA decision problem obviously belongs to class NP. In what follows we will
consider a special case of this problem, where K = 0, denoting it by SSA0. Let
us reduce a classical NP-complete problem [7] Exact Cover by 3-Sets to
SSA0.

Exact Cover by 3-Sets.
Instance: A finite set Z such that |Z| = 3n and a collection

X = {X1,X2, . . . ,Xk} of 3-element subsets of the set Z.
Question: Does X contain an exact cover for set Z, i.e. a collection

{Xi1 ,Xi2 , . . . ,Xin} ⊆ X such that ∪n
j=1Xij = Z?

Given an instance of Exact Cover by 3-Sets, let us construct an equiv-
alent instance of SSA0 problem. Put q = 3n and M = n + 1. For each subset
Xi, i = 1, . . . , k, a 3n-dimensional point yi is assigned, whose j-th coordinate
(j = 1, 2, . . . , 3n) is defined as y

(j)
i = 1, if j ∈ Xi, and y

(j)
i = 0 otherwise. Let

yk+1 = (−1, . . . ,−1), N = k + 1 and Y = {y1, y2, . . . , yk, yk+1}.
Note that the objective function of SSA problem equals zero iff

z :=
∑

y∈C y = 0.
If the instance of Exact Cover by 3-Sets has the answer “Yes”, then ob-

viously the subset C = {yi1 , . . . , yin , yN} turns the objective function (1) into 0.
Now let the optimal value of the objective function in SSA problem be equal

to 0. Then subset C must contain the point yN = (−1, . . . ,−1), because otherwise
all coordinates of point z are non-negative and at least one of them is positive.



In this case, the rest of the points in the subset C altogether should contain
exactly one 1 in each coordinate, so there should be exactly n such points and
the subsets corresponding to them form an exact cover. Note that the equality
|C| = n + 1 = M holds.

Finally, the strong NP-hardness of SSA problem follows from the fact that an
NP-complete in the strong sense problem Exact Cover by 3-Sets is reduced
to a special case of SSA problem with binary input and the objective function
values are bounded by a polynomial in n. ut

Now let us consider complexity and approximability of SSA problem when
the dimension q is fixed.

Let ρ > 1. A polynomial-time algorithm that finds a feasible solution to a
minimization problem, such that the value of objective function in this solution
is at most ρ times the optimal value (if the problem is solvable) is called a
ρ-approximation algorithm. The corresponding feasible solution is called a ρ-
approximate solution.

Below we denote by N the set of positive integers.

Theorem 2. For any function r : N → (1,∞), the problem of searching an
r(N)-approximate solution to SSA problem is NP-hard even in the special case
of q = 2.

Proof. Let us reduce the following modification of the NP-complete Partition
problem (see e.g. [7]), which we call Bounded Partition, to the decision prob-
lem SSA0.

Bounded Partition
Instance: An even number n of positive integers αj , j = 1, 2, . . . , n.
Question: Is there a subset I ⊂ {1, 2, . . . , n} such that |I| = n/2 and∑

i∈I αi = 1
2

∑n
i=1 αi?

Given a set of integers α1, α2, . . . , αn we construct an instance of SSA0 with
q = 2, N = n + 1 and M = n/2 + 1. Let L =

∑n
i=1 αi. Put yi = (L,αi) for

i = 1, 2, . . . , n, yn+1 = (−Ln/2,−L/2) and for each subset I ⊆ {1, 2, . . . , N}
denote S(I) =

∑
i∈I yi.

If the set I required in Bounded Partition problem exists, then it is easy
to see that S(I ∪ {n + 1}) = 0, and therefore the objective function (1) turns
into zero.

Suppose there exists a set C∗ of cardinality at least M such that the value
of the objective function on this set is zero. Let z denote the sum of elements
of C∗. Now since the first coordinate of z equals 0, we have |C∗| = n/2 + 1
and yn+1 ∈ C∗. Then, due to zero value in the second coordinate of z we have∑

i∈I αi = L/2 = 1
2

∑n
i=1 αi, where I = {i | yi ∈ C∗} \ {n + 1}.

The observed properties of the reduction imply the NP-completeness of SSA0
problem for q = 2. Under this reduction, the objective function value of an
optimal solution to the SSA problem instance equals zero iff the Bounded
Partition problem instance has the answer “Yes”, and the same applies to
any r(N)-approximate solution to SSA problem. Finally, since the objective



function of SSA problem is efficiently computable, the problem of searching an
r(N)-approximate solution is NP-hard. ut

Theorem 2 implies that unless P=NP, SSA problem does not admit ap-
proximation algorithms with any non-trivial guaranteed approximation ratio,
and, in particular it does not admit a fully polynomial time approximation
scheme (FPTAS).

SSA problem with a fixed q ≥ 2 can not be solved by a polynomial-time
algorithm, unless P=NP. Nevertheless, as shown below, it is solvable in a pseudo-
polynomial time, provided that all points of set Y have integer coordinates and
the dimension q of the space is fixed.

For any two sets P,Q ⊂ Rq we introduce the following rule of summation:

P +Q = {x ∈ Rq | x = y + y′, y ∈ P, y′ ∈ Q}. (3)

For any positive integer r we denote by B(r) the set of integer points in Rq with
absolute values of all coordinates at most r. Then |B(r)| ≤ (2r + 1)q.

Let us denote the maximal absolute value of coordinates of the input points
y1, y2, . . . , yN by b. The proposed algorithm for solving SSA problem consists in
consequent computing of subsets Sk ⊆ B(bk), k = 0, 1, . . . ,M, that can be ob-
tained by summing at most k different elements of the set of points y1, y2, . . . , yk.
First we assume S0 = {0}. After that we compute Sk = Sk−1 + {0, yk} for all
k = 1, 2, . . . , N using formula (3). For each element z ∈ Sk we store an integer
parameter nz, equal to the maximum number of addends that can be used to
produce z and the nz-element set of these addends Cz ⊆ Y.

Finally, find in the subset SN an element z ∈ SN with nz ≥ M and the
minimum value of ‖z‖/nz and output the subset Cz corresponding to such z.

Computation of Sk takes O(q · |Sk−1|) operations. Therefore the following
theorem holds

Theorem 3. If the coordinates of the points of input set Y are integer and b is
the maximum absolute value of these coordinates then SSA problem is solvable
in O(qN(2bN + 1)q) time.

In the case of fixed dimension q, i.e. q = O(1), the complexity of the algo-
rithm presented above is O(N(bN)q) and SSA problem is solvable in a pseudo-
polynomial time in this special case.

Conclusion

The obtained results imply that there exist no exact polynomial or pseudo-
polynomial algorithms for SSA problem, unless P=NP.

In the case when the dimension of the space is not a part of the input (i.e.
the dimension is fixed), SSA problem is NP-hard even on the plane and no
approximation algorithms with non-trivial guaranteed approximation ratio ex-
ist for this problem, unless P=NP. SSA problem is solvable, however, within a



pseudo-polynomial time if the coordinates of the input points are all integer and
the dimension is fixed.

The obtained results indicate that in spite of simplicity of formulation of the
considered problem, efficient algorithms finding an exact or even an approximate
solution to it are unlikely to exist. An exception is the special case where the
space dimension is bounded by a constant and coordinates of the input points
are bounded by a polynomial in N . We expect that obtaining “positive” results
for SSA would require analysis of the special cases, which reflect the specifics of
applications area.

Acknowledgements. This research is supported by RFBR, projects 15-01-
00462, 16-01-00740 and 15-01-00976.

References

1. AggarwalC.C.: Data Mining: The Textbook. Springer International Publishing
(2015)

2. BishopM.C.: Pattern Recognition and Machine Learning. New York: Springer Sci-
ence+Business Media, LLC (2006)

3. Baburin A.E., Gimadi E.Kh., Glebov N. I. and Pyatkin A.V.: The problem of find-
ing a subset of vectors with the maximum total weight. Journal of Applied and
Industrial Mathematics. 2 (1), 32–38 (2008)

4. Borisovsky P.A., Eremeev A.V., Grinkevich E.B., Klokov S.A. and Vinnikov A.V.:
Trading Hubs Construction for Electricity Markets. In: Kallrath, J., Pardalos, P.M.,
Rebennack, S., Scheidt, M. (eds.) Optimization in the Energy Industry. pp. 29–58.
Springer, Berlin, Heidelberg (2009)

5. Dolgushev A.V., Kel’manov A.V.: An approximation algorithm for solving a prob-
lem of cluster analysis. J. Appl. Indust. Math. 5 (4), 551–558 (2011)

6. Dolgushev A.V., Kel’manov A.V., Shenmaier V.V.: Polynomial-time approximation
scheme for a problem of partitioning a finite set into two clusters (in Russian). Trudy
Instituta Matematiki i Mekhaniki UrO RAN. 21 (3), 100–109 (2015)

7. Garey, M.R. and Johnson, D.S.: Computers and intractability. A guide to the theory
of NP -completeness. W.H. Freeman and Company, San Francisco (1979)

8. Gimadi E.Kh., Glazkov Yu.V., Rykov I.A.: On two problems of choosing some subset
of vectors with integer coordinates that has maximum norm of the sum of elements
in euclidean space. J. Appl. Indust. Math. 3 (3), 343–352 (2009)

9. Gimadi E.Kh., Kel’manov A.V., Kel’manova M.A., Khamidullin S.A.: Aposteriori
finding a quasiperiodic fragment with given number of repetitions in a number
sequence (in Russian). Sibirskii Zhurnal Industrial’noi Matematiki. 9 (25), 55–74
(2006)

10. Gimadi E.Kh., Kel’manov A.V., Kel’manova M.A., Khamidullin S.A.: A posteriori
detecting a quasiperiodic fragment in a numerical sequence. Pattern Recognition
and Image Analysis. 18 (1), 30–42 (2008)

11. Gimadi E.Kh., Pyatkin A.V., Rykov I.A.: On polynomial solvability of some prob-
lems of a vector subset choice in a Euclidean space of fixed dimension. J. Appl.
Indust. Math. 4 (4), 48–53 (2010)



12. Gimadi E.Kh., Rykov I.A.: A randomized algorithm for finding a subset of vectors.
J. Appl. Indust. Math. 9 (3), 351–357 (2015)

13. Hastie T., TibshiraniR., Friedman J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, New York (2001)

14. Kel’manov A.V.: Off-line detection of a quasi-periodically recurring fragment in a
numerical sequence. Proceedings of the Steklov Institute of Mathematics. 263 (S2),
84–92 (2008)

15. Kel’manov A.V.: On the complexity of some data analysis problems. Comput.
Math. and Math. Phys. 50 (11), 1941–1947 (2010)

16. Kel’manov A.V.: On the complexity of some cluster analysis problems. Comput.
Math. and Math. Phys. 51 (11), 1983–1988 (2011)

17. Kel’manov A.V., Khamidullin S.A., Kel’manova M.A.: Joint finding and evalu-
ation of a repeating fragment in noised number sequence with given number of
quasiperiodic repetitions (in Russian). In: Book of Abstracts of the Russian Con-
ference “Discret Analysis and Operations Reserch” (DAOR-2004), p. 185. Sobolev
Institute of Mathematics SB RAN, Novosibirsk (2004)

18. Kel’manov A.V., Khandeev V.I.: A 2-approximation polynomial algorithm for a
clustering problem. J. Appl. Indust. Math. 7 (4), 515–521 (2013)

19. Kel’manov A.V., Khandeev V.I.: A randomized algorithm for two-cluster partition
of a set of vectors. Comput. Math. and Math. Phys. 55 (2), 330–339 (2015)

20. Kel’manov A.V., Khandeev V.I.: An exact pseudopolynomial algorithm for a prob-
lem of the two-cluster partitioning of a set of vectors. J. Appl. Indust. Math. 9 (4),
497–502 (2015)

21. Kel’manov A.V., Khandeev V.I.: Fully polynomial-time approximation scheme for
a special case of a quadratic Euclidean 2-clustering problem. Comput. Math. and
Math. Phys. 56 (2), 334–341 (2016)

22. Kel’manov A.V., Pyatkin A.V.: On the complexity of a search for a subset of
“similar” vectors. Doklady Mathematics. 78 (1), 574–575 (2008)

23. Kel’manov A.V., Pyatkin A.V.: On a version of the problem of choosing a vector
subset. J. Appl. Indust. Math. 3 (4), 447–455 (2009)

24. Kel’manov A.V., Pyatkin A.V.: Complexity of certain problems of searching for
subsets of vectors and cluster analysis. Comput. Math. and Math. Phys. 49 (11),
1966–1971 (2009)

25. Tarasenko, E.: On complexity of single-hub selection problem (in Russian). In:
Proc. of 24-th Regional Conference of Students ”Molodezh tretjego tysacheletija”.
pp. 45–48. Omsk State University, Omsk (2010)


