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Abstract—In  this  paper,  the  problem  of  locaion  ground
stations  in  a  global  satellite  communications  network  is
formulated  and  a  variable  neighborhood  search  algorithm
(VNS) for its solving is proposed. In this problem, it is required
to place and configure the design of the ground stations, so as
to  maximize  the  number  of  delivered  data  packets,  given  a
budget constraint and the set of sessions between the users or
the  users  and the  Internet.  The overall  amount  of  delivered
packets for any tentative location and design of ground stations
is  estimated by  means  of  approximate solving of  the  length-
bounded  fractional  maximum  multiproduct  flow  problem
where  all  edges  are  of  length  one.  Results  of  computational
experiments  and  comparison  of  VNS  with  local  search
algorithms are provided.
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I. INTRODUCTION

In this article,  we formulate  and propose a method for
solving  the  problem  of  locating  and  designing  ground
stations  in  a  global  satellite  communications  network.  We
assume that  the network consists of  satellites in low Earth
orbit,  ground  stations  (providing  Internet  access)  and  a
network operations control center (NOCC) (see e.g. [1, 2]).
At each potential location of a ground station, such a station
can be created according to one of the possible options or not
created at all. The design of a ground station is described by
the throughput of connections to satellites, the throughput of
connections with other ground stations via ground Internet
network, and the cost of using this design of a ground station
per unit of time. It is  assumed that the system operates in
discrete  time intervals,  which are small  enough to  assume
that  the  quality  of  communication  channels  and  customer
requirements do not change over one time period. The data
packet routes for each source-destination pair are calculated
in the Network Operations Control Center.

The packet routes for each pair of source and destination
are calculated in NOCC in real time, and each node (satellite
or  ground  station)  receives  the routes  for  all  packets
originating from this node. Each packet sent from source to a
destination contains some data content and the packet's route.
A maximal admissible number of edges L in packet paths is
imposed due to a technical limitation on the number of bits
reserved for encoding a packet path. Short packet paths also
typically have low latency.  For  the  sake of  simplicity,  we
assume that each task instance describes the system in one

time interval, and all requirements for this time interval are
known in advance.

The solution to the problem of placement and design of
ground stations can be divided into two stages: 1) placement
of ground stations and selection of design configuration for
each  of  them;  2)  routing  of  information  packets  between
clients within a certain time interval. The decision variables
of the first stage determine the set of ground stations under
construction and their design options.  At the second stage,
packet routes are calculated in each time interval, taking into
account session requests from the clients and the current state
of the communication network. Quality of service (QoS) in a
time interval is measured as the average number of lost or
non-routed  packets  per  unit  of  time.  i.e., the  difference
between the number of packets for the requested sessions and
the  number  of  routed  packets.  Therefore,  the  number  of
routed packets is considered as the maximization criterion in
what follows. The total budget for the use of ground stations
over a given period of time is imposed as a constraint.

In preceding publications, different approaches to solving
the packets routing problem have been studied theoretically
and  experimentally  [3]  and  the  graph-based  models  of
network with different levels of detail have been discussed
[4].

The novelty of this work lies in the fact that an algorithm
for searching for a variable neighborhood (VNS) is proposed
to  solve  the  problem  of  locating  and  designing  ground
stations.  The algorithm is  tested on  examples  of  synthetic
data  motivated  by  one  of  the  promising  satellite
communication  networks.  An  experimental  comparison  of
VNC with some simple local search algorithms is given.

II. PROBLEM OF LOCATION AND DESIGN OF GROUND

STATIONS FOR SOFTWARE DEFINED SATELLITE NETWORKS

A. Packet Routing Problem Formulation

In  the  packet  routing  problem,  we  are  given  the
following as the input:

G = (V,  E) is  the  digraph  where  V is  the  set  of  the
satellites and ground stations, and E is the set of connections
(channels);

n=|V|, m=|E|;
u(e) ≥ 0 is the throughput of connection e;
N is the total number of active sessions in the system.



Each session i is represented by a triple (Ai, Bi, Wi), i=1,
…,N, where Ai, Bi ∈ V is a pair of source-destination nodes,
Wi is  data  traffic  per  time  unit  during  the  session.  Each
session is considered here as a session between the nodes of
graph G (ground stations or satellites) to which the users are
currently connected.

L is the maximal admissible number of edges in a packet
path.

τ(e) is a delay in data transmission over a channel e ∈ E.
The problem asks to find a set of paths in G for so that

each  session  corresponds  to  at  most  one  route,  and  the
maximum possible number of  sessions is  routed this way.
The problem has constraints thet the maximum number of
arcs in each path does not exceed  L and that for each arc
e∈E, the total  amount of  information transmitted over  all
routes passing through e must not exceed the capacity u(e).
As a secondary criterion, we consider the maximum delay of
the routed sessions.

Note  that  a  formulation of the problem would be NP-
hard  if  we  introduced  an  upper  bound  of  the  secondary
criterion.  This is  due to the NP hardness  of the fractional
length-bounded maximum multicommodity flow [5]. If the
packets routing problem must be solved quickly in real time,
the problem is formulated only for maximization of the main
criterion. The secondary criterion is taken into account only
in the greedy-type heuristic below.

B. Formulation of the Problem of Placement and Design of 
Graund Stations 

At each potential  location  of  a  ground station, such  a
station  can  be  created  according  to  one  of  the  possible
options or not created at all. The design of the ground station
is characterized by:

 throughput of connections with satellites;
 throughput  of  connections  with  other  ground

stations;
 the cost of using this station per unit of time.

Let's introduce the notation:
I is the set of locations for ground stations.
B is the admissible budget to be spent on ground stations

construction and utilization.
R is the set of configurations (design variants), possible

for each ground station.
ci

r is  the  cost  of  opening  a  configuration of  type  r at
location i.

zi
r  is  equal  to 1 if  in  location i  the  station  with

configuration r is placed, and 0 otherwise.
f(Z) is the solution to the packet routing problem, given

the vector of configurations Z=(zi
r).

Constraints: Σ

1) ∑
i∈ I
∑
r∈ K

ci
r

 z i
r
 ≤B, the budget constraint;

2) ∑
r∈ K

zi
r≤1

,  no  more  than  one
configuration may be chosen at each location;

3) ∑
i∈ I
∑
r∈ K

zi
r≥1

, at least one ground station
is open.

It is  required to place ground stations so that the total
number of routed packets is maximal.

III. GREEDY ALGORITHM FOR THE PACKET ROUTING

PROBLEM

As it was noted in [4], if the transmission rate of each
session  is  can  be  considered  negligible  compared  to  the
channel  bandwidth  and  source-to-destination  transmission
requirements  then  the  packet  routing  problem  may  be
approximated  by  the  fractional  length-bounded  maximum
multicommodity flow problem with unit edge weights and k
different  commodities  (the  source-destination  pairs  of
sessions in our case). The latter may be solved exactly using
an  LP formulation,  which  involves  O(Lkn+m)  constraints
and  O(Lkm)  variables  [3,6]  or  approximately  with  any
required  relative  error,  using  the  fully  polynomial  time
approximation  scheme  [3].  However,  these  approaches
require significant amount of CPU time, so that evaluation
of  numerous tentative  location and  design options  for  the
ground stations  within  a  metaheuristic  algorithm becomes
practically  impossible.  In order to  overcome this issue,  in
what follows we will  use a relatively fast  greedy heuristic
from [4].

The  basic  principle of  the  greedy  algorithm  [4]  is  to
assign sessions to routes iteratively, accepting only routes of
at  most  L edges.  After  routing  a  session  (Ai,  Bi,  Wi),  the
capacity  of  edges  along the  shortest  path from  Ai to  Bi is
reduced  by  Wi.  Whenever the  capacity  of  an arc is
exhausted, this  arc is excluded from further consideration.
The session assignment sequence in the greedy algorithm is
by descending shortest path delay. This rule was chosen to
reduce the maximum latency and to satisfy the maximum
arcs per path constraint  L,  since sessions with the highest
latency on the shortest paths are more likely to violate the
upper bound L.

The shortest paths between all pairs of vertices one can
use the algorithms of Dijkstra's, Floyd-Warshall or Bellman-
Ford  algorithm.  Because  the  set  of  shortest  paths  is
evaluated  at  most  m  times,  the  time  complexity  of  the
greedy algorithm is O(mn3) if Floyd-Warshall algorithm is
used. The Bellman-Ford algorithm can be easily  truncated
so that the returned set of paths contains no more than  L
edges  in  each  path.  Then,  if  n parallel  processors  are
available, the greedy algorithm may be implemented in O(

m2L)  time.  This  greedy  algorithm has  no  approximation
guarantee, but in the experimental testing in [4] it has shown
a relative error at most 7% on the problem instances of the
same type as we use in the present paper.

IV. VARIABLE NEIGHBORHOOD SEARCH 

The variable neighborhood search (VNS) was proposed
in [7]. It is based on the following idea: A local optimum in
one neighborhood may not be a local optimum in another
neighborhood. If we look at all possible neighborhoods, then
one of the local optima will be the global optimum. Then, by
changing the neighborhood, you can continue the search and
find  a  better  solution.  Mladenovich  and Hansen  were  the
first to suggest working with variable neighborhoods. They
presented  a  basic  outline  of  the  VNS  approach  and
illustrated  its  effectiveness  for  the  Traveling  Salesman
problem.  VNS  has  been  used  to  solve  various  object
placement  problems  (p-median  problem,  Weber  problem,
competitive placement problem, etc.). In the present paper,
we adapt the VNS algorithm to the problem of location and
design of ground stations. 

Outline of the Variable Neighborhood Search

Suppose that  for each solution  Z, a  subset  N(Z)  in the
space of feasible solutions is defined (a neighborhood of Z).
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The family of all sets N(Z) is called a neighborhood system.
In  what  follows,  we  use  the  basic  scheme  of  the  VNS.
Suppose  there  are  K systems  of  neighborhoods N k,  k=1,
…,K, which may be used in the VNS. 

Initialization:  choose  the  initial  feasible  solution  Z  at
random.

Repeat the following steps until stopping criterion is met.
Set k:=1.
While k < K+1, repeat:
(a) Generate a point Z' randomly from Nk(Z);
(b) Apply local search from the starting point  Z'; let  Z''

denote the local optimum found by the local search; 
(c) If the local optimum Z'' improves the current solution

Z,  then move there:  Z:=Z'',  k:=1,  and continue searching;
otherwise move to next neighborhood, that is, set k:=k+1.

Return Z. 

As a stopping criterion, the maximum computation time
is  used.  If  the  VNS  looked  through  the  entire  list  of
neighborhoods in less time, then it restarted.

A. Neighborhoods

An important step in the development of the algorithm is
to  determine  the  type  of  neighborhoods.  We  used  three
neighborhoods.

In  the  first  neighborhood  (denoted  N1),  an  admissible
solution  is  called  a  neighbor  if  it  differs  from  the  given
solution by 1 in one of the components.

In the second neighborhood (denoted N2), an admissible
solution  is  called  a  neighbor  if  it  differs  from  the  given
solution by –1 in of the components.

In  the  third  neighborhood  (denoted  N3),  a  solution  is
called a neighbor if it differs from the given solution by 1 or
–1 in one of the components. 

V. COMPUTATINAL EXPERIMENT

The algorithm is implemented in Python and tested using
Intel Xeon CPU X5675. Testing instances were built on the
basis of a series of instances of packet routing problem in
global satellite networks from [4].

The pairs of source and destination nodes were generated
to  roughly model  the communication flows on the global
scale.  It  was  assumed  that  the  number  of  users  is
proportional  to  the  human  population.  The  source  and
destination nodes of each session were randomly generated
users. The users were assigned to the nearest ground station
or satellite.

It was assumed that the channel bandwidth is between
100 and 300 Mbps. The transmission rate of each session
was assumed to be 9600 bps. 

The computational experiment was carried out on 6 test
instances, in each of these examples the overall number of
transmitted packets was 2355465600. 

The expert location of the ground stations, followed by
the  greedy  packet  routing  algorithm  yielded  the  results
presented in Table I. 

TABLE I. AVERAGE NUMBER OF LOST PACKETS (EXPERT
SOLUTION)

problem 1 problem 2 problem 3 problem 4 problem 5 problem 6

2435∙105 2235∙105 2219∙105 2477∙105 2220∙105 2237∙105

For each  instance,  the  VNS algorithm worked for  the
same  ∙amount of  time,  namely 5,  10,  15, 30,  60  minutes.

Such  a duration  is  considered acceptable  from a  practical
point  of  view.  The  results  of  the  VNS  algorithm  are
presented in Table II. 

TABLE II. NUMBER OF LOST PACKETS (VNS RESULTS)

min problem 1 problem 2 problem 3 problem 4 problem 5 problem 6

5 2435∙105 2310∙105 2144∙105 2312∙105 2230∙105 2254∙105

10 2448∙105 2218∙105 2084∙105 2468∙105 2070∙105 2179∙105

15 909∙105 1647∙105 1846∙105 1273∙105 1616∙105 1866∙105

30 1678∙105 1294∙105 1584∙105 800∙105 1003∙105 966∙105

60 1499∙105 847∙105 700∙105 665∙105 864∙105 865∙105

In  addition  to  the  VNS  algorithm,  the  local  search
method was applied using a single neighborhood N1,  N2 or
N3 separately. Algorithm N1 uses only first  neighborhood,
algorithms  N2  and  N3  use  the  second  and  third
neighborhoods, respectively. In the algorithm “N1,N2,N3”,
these three neighborhoods are looked through sequentially.
All algorithms were given the same CPU time. The results
can be seen in Fig.1-3.

Within  the  counting  time  of  5  and  10  minutes,  all
algorithms showed similar results. Therefore in what follows
we provide the graphs of the obtained results when the CPU
time is equal to 15, 30 and 60 minutes. Figs. 1-3 show that
with  increasing  time,  the  advantage  of  VNS  over  other
considered variants of local search algorithms increases.
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Fig. 1. Average number of lost packets for 15 min run.
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Fig. 2. Average number of lost packets for 30 min run.



Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

500

1000

1500

2000

2500

3000

Expert solution VNS N1 N2 N3

N1,N2,N3

Fig. 3. Average number of lost packets for 60 min run.

VI. CONCLUSIONS 

The  obtained  results  indicate  that  VNS is a  promising
method  for  approximate  solution  of  the  ground  stations
location  and design problem. In this  study, on the  second
stage  we  considerate  only  a  single  period  of  network
functioning  and  assumed  that  the  fractional  maximum
multicommodity  flow  model  provides  an  adequate
approximation  of  the  system  within  a  single  period.  We

expect that in the future research, this model will be refined
by  a  simulation  model,  and  a  simulation-optimization
approach will be developed for its solution.
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