
Location and Design of Ground Stations for
Software Defined Satellite Networks

1st Anton Eremeev
Sobolev Institute of Mathematics

SB RAS
Omsk, Russia

eremeevtmp@yandex.ru

4th Tatyana Levanova
Sobolev Institute of Mathematics

SB RAS
Omsk, Russia

levanovat@yandex.ru

2nd Alexandra Gette
Dostoevsky Omsk State University

Omsk, Russia
gette4aleks@yandex.ru

3rd Sergei Hrushev
Sobolev Institute of Mathematics

SB RAS
Omsk, Russia

hrushev@omsknet.pro

Abstract—In this paper, the problem of locaion ground
stations in a global satellite communications network is
formulated and a variable neighborhood search algorithm
(VNS) for its solving is proposed. In this problem, it is required
to place and configure the design of the ground stations, so as
to maximize the number of delivered data packets, given a
budget constraint and the set of sessions between the users or
the users and the Internet. The overall amount of delivered
packets for any tentative location and design of ground stations
is estimated by means of approximate solving of the length-
bounded fractional maximum multiproduct flow problem
where all edges are of length one. Results of computational
experiments and comparison of VNS with local search
algorithms are provided.

Keywords—routing problem, location, software defined
network, greedy algorithm, FPTAS, computational experiment

I. INTRODUCTION

In this article, we formulate and propose a method for
solving the problem of locating and designing ground
stations in a global satellite communications network. We
assume that the network consists of satellites in low Earth
orbit, ground stations (providing Internet access) and a
network operations control center (NOCC) (see e.g. [1, 2]).
At each potential location of a ground station, such a station
can be created according to one of the possible options or not
created at all. The design of a ground station is described by
the throughput of connections to satellites, the throughput of
connections with other ground stations via ground Internet
network, and the cost of using this design of a ground station
per unit of time. It is assumed that the system operates in
discrete time intervals, which are small enough to assume
that the quality of communication channels and customer
requirements do not change over one time period. The data
packet routes for each source-destination pair are calculated
in the Network Operations Control Center.

The packet routes for each pair of source and destination
are calculated in NOCC in real time, and each node (satellite
or ground station) receives the routes for all packets
originating from this node. Each packet sent from source to a
destination contains some data content and the packet's route.
A maximal admissible number of edges L in packet paths is
imposed due to a technical limitation on the number of bits
reserved for encoding a packet path. Short packet paths also
typically have low latency. For the sake of simplicity, we
assume that each task instance describes the system in one

time interval, and all requirements for this time interval are
known in advance.

The solution to the problem of placement and design of
ground stations can be divided into two stages: 1) placement
of ground stations and selection of design configuration for
each of them; 2) routing of information packets between
clients within a certain time interval. The decision variables
of the first stage determine the set of ground stations under
construction and their design options. At the second stage,
packet routes are calculated in each time interval, taking into
account session requests from the clients and the current state
of the communication network. Quality of service (QoS) in a
time interval is measured as the average number of lost or
non-routed packets per unit of time. i.e., the difference
between the number of packets for the requested sessions and
the number of routed packets. Therefore, the number of
routed packets is considered as the maximization criterion in
what follows. The total budget for the use of ground stations
over a given period of time is imposed as a constraint.

In preceding publications, different approaches to solving
the packets routing problem have been studied theoretically
and experimentally [3] and the graph-based models of
network with different levels of detail have been discussed
[4].

The novelty of this work lies in the fact that an algorithm
for searching for a variable neighborhood (VNS) is proposed
to solve the problem of locating and designing ground
stations. The algorithm is tested on examples of synthetic
data motivated by one of the promising satellite
communication networks. An experimental comparison of
VNC with some simple local search algorithms is given.

II. PROBLEM OF LOCATION AND DESIGN OF GROUND

STATIONS FOR SOFTWARE DEFINED SATELLITE NETWORKS

A. Packet Routing Problem Formulation

In the packet routing problem, we are given the
following as the input:

G = (V, E) is the digraph where V is the set of the
satellites and ground stations, and E is the set of connections
(channels);

n=|V|, m=|E|;
u(e) ≥ 0 is the throughput of connection e;
N is the total number of active sessions in the system.

Each session i is represented by a triple (Ai, Bi, Wi), i=1,
…,N, where Ai, Bi ∈ V is a pair of source-destination nodes,
Wi is data traffic per time unit during the session. Each
session is considered here as a session between the nodes of
graph G (ground stations or satellites) to which the users are
currently connected.

L is the maximal admissible number of edges in a packet
path.

τ(e) is a delay in data transmission over a channel e ∈ E.
The problem asks to find a set of paths in G for so that

each session corresponds to at most one route, and the
maximum possible number of sessions is routed this way.
The problem has constraints thet the maximum number of
arcs in each path does not exceed L and that for each arc
e∈E, the total amount of information transmitted over all
routes passing through e must not exceed the capacity u(e).
As a secondary criterion, we consider the maximum delay of
the routed sessions.

Note that a formulation of the problem would be NP-
hard if we introduced an upper bound of the secondary
criterion. This is due to the NP hardness of the fractional
length-bounded maximum multicommodity flow [5]. If the
packets routing problem must be solved quickly in real time,
the problem is formulated only for maximization of the main
criterion. The secondary criterion is taken into account only
in the greedy-type heuristic below.

B. Formulation of the Problem of Placement and Design of
Graund Stations

At each potential location of a ground station, such a
station can be created according to one of the possible
options or not created at all. The design of the ground station
is characterized by:

 throughput of connections with satellites;
 throughput of connections with other ground

stations;
 the cost of using this station per unit of time.

Let's introduce the notation:
I is the set of locations for ground stations.
B is the admissible budget to be spent on ground stations

construction and utilization.
R is the set of configurations (design variants), possible

for each ground station.
ci

r is the cost of opening a configuration of type r at
location i.

zi
r is equal to 1 if in location i the station with

configuration r is placed, and 0 otherwise.
f(Z) is the solution to the packet routing problem, given

the vector of configurations Z=(zi
r).

Constraints: Σ

1) ∑
i∈ I
∑
r∈ K

ci
r

 z i
r
 ≤B, the budget constraint;

2) ∑
r∈ K

zi
r≤1

, no more than one
configuration may be chosen at each location;

3) ∑
i∈ I
∑
r∈ K

zi
r≥1

, at least one ground station
is open.

It is required to place ground stations so that the total
number of routed packets is maximal.

III. GREEDY ALGORITHM FOR THE PACKET ROUTING

PROBLEM

As it was noted in [4], if the transmission rate of each
session is can be considered negligible compared to the
channel bandwidth and source-to-destination transmission
requirements then the packet routing problem may be
approximated by the fractional length-bounded maximum
multicommodity flow problem with unit edge weights and k
different commodities (the source-destination pairs of
sessions in our case). The latter may be solved exactly using
an LP formulation, which involves O(Lkn+m) constraints
and O(Lkm) variables [3,6] or approximately with any
required relative error, using the fully polynomial time
approximation scheme [3]. However, these approaches
require significant amount of CPU time, so that evaluation
of numerous tentative location and design options for the
ground stations within a metaheuristic algorithm becomes
practically impossible. In order to overcome this issue, in
what follows we will use a relatively fast greedy heuristic
from [4].

The basic principle of the greedy algorithm [4] is to
assign sessions to routes iteratively, accepting only routes of
at most L edges. After routing a session (Ai, Bi, Wi), the
capacity of edges along the shortest path from Ai to Bi is
reduced by Wi. Whenever the capacity of an arc is
exhausted, this arc is excluded from further consideration.
The session assignment sequence in the greedy algorithm is
by descending shortest path delay. This rule was chosen to
reduce the maximum latency and to satisfy the maximum
arcs per path constraint L, since sessions with the highest
latency on the shortest paths are more likely to violate the
upper bound L.

The shortest paths between all pairs of vertices one can
use the algorithms of Dijkstra's, Floyd-Warshall or Bellman-
Ford algorithm. Because the set of shortest paths is
evaluated at most m times, the time complexity of the
greedy algorithm is O(mn3) if Floyd-Warshall algorithm is
used. The Bellman-Ford algorithm can be easily truncated
so that the returned set of paths contains no more than L
edges in each path. Then, if n parallel processors are
available, the greedy algorithm may be implemented in O(

m2L) time. This greedy algorithm has no approximation
guarantee, but in the experimental testing in [4] it has shown
a relative error at most 7% on the problem instances of the
same type as we use in the present paper.

IV. VARIABLE NEIGHBORHOOD SEARCH

The variable neighborhood search (VNS) was proposed
in [7]. It is based on the following idea: A local optimum in
one neighborhood may not be a local optimum in another
neighborhood. If we look at all possible neighborhoods, then
one of the local optima will be the global optimum. Then, by
changing the neighborhood, you can continue the search and
find a better solution. Mladenovich and Hansen were the
first to suggest working with variable neighborhoods. They
presented a basic outline of the VNS approach and
illustrated its effectiveness for the Traveling Salesman
problem. VNS has been used to solve various object
placement problems (p-median problem, Weber problem,
competitive placement problem, etc.). In the present paper,
we adapt the VNS algorithm to the problem of location and
design of ground stations.

Outline of the Variable Neighborhood Search

Suppose that for each solution Z, a subset N(Z) in the
space of feasible solutions is defined (a neighborhood of Z).

This work was supported by the RSF, №21-41-09017.

The family of all sets N(Z) is called a neighborhood system.
In what follows, we use the basic scheme of the VNS.
Suppose there are K systems of neighborhoods N k, k=1,
…,K, which may be used in the VNS.

Initialization: choose the initial feasible solution Z at
random.

Repeat the following steps until stopping criterion is met.
Set k:=1.
While k < K+1, repeat:
(a) Generate a point Z' randomly from Nk(Z);
(b) Apply local search from the starting point Z'; let Z''

denote the local optimum found by the local search;
(c) If the local optimum Z'' improves the current solution

Z, then move there: Z:=Z'', k:=1, and continue searching;
otherwise move to next neighborhood, that is, set k:=k+1.

Return Z.

As a stopping criterion, the maximum computation time
is used. If the VNS looked through the entire list of
neighborhoods in less time, then it restarted.

A. Neighborhoods

An important step in the development of the algorithm is
to determine the type of neighborhoods. We used three
neighborhoods.

In the first neighborhood (denoted N1), an admissible
solution is called a neighbor if it differs from the given
solution by 1 in one of the components.

In the second neighborhood (denoted N2), an admissible
solution is called a neighbor if it differs from the given
solution by –1 in of the components.

In the third neighborhood (denoted N3), a solution is
called a neighbor if it differs from the given solution by 1 or
–1 in one of the components.

V. COMPUTATINAL EXPERIMENT

The algorithm is implemented in Python and tested using
Intel Xeon CPU X5675. Testing instances were built on the
basis of a series of instances of packet routing problem in
global satellite networks from [4].

The pairs of source and destination nodes were generated
to roughly model the communication flows on the global
scale. It was assumed that the number of users is
proportional to the human population. The source and
destination nodes of each session were randomly generated
users. The users were assigned to the nearest ground station
or satellite.

It was assumed that the channel bandwidth is between
100 and 300 Mbps. The transmission rate of each session
was assumed to be 9600 bps.

The computational experiment was carried out on 6 test
instances, in each of these examples the overall number of
transmitted packets was 2355465600.

The expert location of the ground stations, followed by
the greedy packet routing algorithm yielded the results
presented in Table I.

TABLE I. AVERAGE NUMBER OF LOST PACKETS (EXPERT
SOLUTION)

problem 1 problem 2 problem 3 problem 4 problem 5 problem 6

2435∙105 2235∙105 2219∙105 2477∙105 2220∙105 2237∙105

For each instance, the VNS algorithm worked for the
same ∙amount of time, namely 5, 10, 15, 30, 60 minutes.

Such a duration is considered acceptable from a practical
point of view. The results of the VNS algorithm are
presented in Table II.

TABLE II. NUMBER OF LOST PACKETS (VNS RESULTS)

min problem 1 problem 2 problem 3 problem 4 problem 5 problem 6

5 2435∙105 2310∙105 2144∙105 2312∙105 2230∙105 2254∙105

10 2448∙105 2218∙105 2084∙105 2468∙105 2070∙105 2179∙105

15 909∙105 1647∙105 1846∙105 1273∙105 1616∙105 1866∙105

30 1678∙105 1294∙105 1584∙105 800∙105 1003∙105 966∙105

60 1499∙105 847∙105 700∙105 665∙105 864∙105 865∙105

In addition to the VNS algorithm, the local search
method was applied using a single neighborhood N1, N2 or
N3 separately. Algorithm N1 uses only first neighborhood,
algorithms N2 and N3 use the second and third
neighborhoods, respectively. In the algorithm “N1,N2,N3”,
these three neighborhoods are looked through sequentially.
All algorithms were given the same CPU time. The results
can be seen in Fig.1-3.

Within the counting time of 5 and 10 minutes, all
algorithms showed similar results. Therefore in what follows
we provide the graphs of the obtained results when the CPU
time is equal to 15, 30 and 60 minutes. Figs. 1-3 show that
with increasing time, the advantage of VNS over other
considered variants of local search algorithms increases.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

500

1000

1500

2000

2500

3000

Expert solu on VNS N1 N2 N3

N1,N2,N3

Fig. 1. Average number of lost packets for 15 min run.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

500

1000

1500

2000

2500

3000

Expert solution VNS N1 N2 N3

N1, N2, N3

Fig. 2. Average number of lost packets for 30 min run.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

500

1000

1500

2000

2500

3000

Expert solution VNS N1 N2 N3

N1,N2,N3

Fig. 3. Average number of lost packets for 60 min run.

VI. CONCLUSIONS

The obtained results indicate that VNS is a promising
method for approximate solution of the ground stations
location and design problem. In this study, on the second
stage we considerate only a single period of network
functioning and assumed that the fractional maximum
multicommodity flow model provides an adequate
approximation of the system within a single period. We

expect that in the future research, this model will be refined
by a simulation model, and a simulation-optimization
approach will be developed for its solution.

[1] S. Xu, X.W. Wang, and M. Huang, “Software defined next-generation
satellite networks: Architecture, challenges, and solutions,” IEEE
Access, vol. 6, 2018, pp. 4027–4041.

[2] Z. Tang, B. Zhao, W. Yu, Z. Feng, and C. Wu, “Software defined
satellite networks: Benefits and challenges,” 2014 IEEE Computers,
Communications and IT Applications Conference, pp. 127–132.

[3] P. Borisovsky, A. Eremeev, S. Hrushev, V. Teplyakov, and
M. Vorozhtsov, “On three approaches to length-bounded maximum
multicommodity flow with unit edge-lengths,” Yugosl. Journ. of
Oper. Res., vol. 29, N 1, 2019, pp. 93–112.

[4] P. Borisovsky, A. Eremeev, S. Hrushev, and V. Teplyakov,
“Experimental evaluation of algorithms for packet routing in software
defined network,” ScienceDirect IFAC PapersOnLine 55–10 (2022).

[5] G. Baier, “Flows with Path Restrictions,” Ph.D. Dissertation, TU
Berlin, Berlin, 2003.

[6] P. Kolman and C. Scheideler, “Improved bounds for the unsplittable
flow problem,” J. Algorithms, vol. 61, no. 1, pp. 20–44, 2006.

[7] N. Mladenovic, and P. Hansen, (1997) “Variable Neighborhood
Search,” Computers and Operations Research, vol. 24, 1997, pp.
1097–1100.

