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Abstract:  The concave cost supply management problem consists in optimization of 

product delivery from a set of providers to the manufacturing units (single unit 

and single planning period in our case) with respect to delivery cost functions 

of concave type. Given the lower and upper bounds on the shipment size for 

each provider, the demand of the manufacturing unit has to be satisfied. In this 

chapter it is shown that it is NP-hard even to find a feasible solution to this 

problem. Considering the problem in integer programming formulation we 

propose a pseudo-polynomial algorithm, using the dynamic programming 

technique. Some possible approaches to solving the problem with multiple 

manufacturing units are discussed. 
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1. INTRODUCTION 

In this chapter, we consider the problem where a set of providers supply 

one type of product to a manufacturing unit, the quantity that can be 

delivered lies between the given minimum and maximum values, and the 

costs proposed by each provider are concave functions of quantity being 

delivered. The concavity assumption reflects a common situation taking 

place in industry since usually the unit cost of products and the 

transportation unit cost decrease as the size of an order increases. This 

problem is similar to, but different from the well known transportation 

problem with concave costs (see e.g. [1, 8]), but in our case a provider either 

delivers a quantity of product that lies between a lower bound and an upper 

bound or delivers nothing. The lower bound is the economical production 

quantity imposed by the provider and the upper bound is a technical 

constraint: it is the maximum quantity the provider is able to produce during 

the period under consideration. Formally the problem is stated as follows:  
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Here n is the number of providers, ix is the quantity of product delivered 

to the manufacturing unit from provider i; A is the total amount of product 

required for the manufacturing unit; mi is the minimum quantity the provider 

i  is prepared to deliver due to the economical reasons; Mi is the maximum 

quantity the provider i is able to deliver. All quantities of product here and in 

the rest of the chapter refer to some standard planning period (e.g. one 

week). The cost ( )ii xk  is 
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where 0≥ia  and 0)( ≥ii xg  are concave and non-decreasing functions 

when ix is positive, i=1,…,n. This problem formulation was suggested in [2] 

not only for the single manufacturing unit but also for the general case with 

multiple manufacturers (see the further discussion in Sect. 3). A number of 

useful properties of the problem have been shown and several heuristic 

algorithms were proposed and tested there. Our goal here is to investigate the 
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exact solution methods and complexity issues of the problem with single 

manufacturing unit and some of its extensions.  

Firstly, in Sect. 2 we demonstrate the NP-hardness of the problem and 

show that the standard dynamic programming approach allows to find the 

optimum in pseudo-polynomal time. A discussion on extension of exact 

solution methods for the case of several providers, and the conclusions are 

contained in Sect. 3 and 4. 

2. PROBLEM COMPLEXITY AND PSEUDO-

POLYNOMIAL TIME ALGORITHM 

Theorem 1. Finding a feasible solution to supply management problem 

(1)-(3) with rational input parameters is NP-hard.  

Proof: Let there be a polynomial time algorithm which finds a feasible 

solution satisfying (2) and (3) when such solutions exist. Assume that 
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substitution nimzx iii ,...,,, 21=⋅=  conditions (2) and (3) for this case may 

be written as follows:  
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The polynomial time algorithm mentioned above is suitable to recognize 

the consistency of (4) and (5) which is equivalent to solving the NP-

complete SUBSET SUM problem [3]. Q.E.D. 

In what follows we suppose that all A, mi, Mi  are integer, which is a 

certain limitation, nevertheless its influence may always be reduced by 

choosing the sufficiently fine-grained scale of the variables. In our analysis 

we will use a fact similar to Result 1 from [2], although here we do not 

require that functions gi(x) are continuously differentiable: 

Theorem 2.  If problem (1)-(3) is solvable, then there exists an optimal 

solution X = { }nxxx ,...,, 21  such that ii mx =  or ii Mx =  or 0=ix  for 

,,...,2,1 ni =  except for at most one { }nj ,...,2,1∈  for which jjj Mxm << . 

Proof: Let { }11
2

1
1

1 ,......, nxxxX =  be an optimal solution to problem (1)-(3). 

Assume there exists a pair { }nji ,....,2,1, ∈  such that iii Mxm << 1  and 

jjj Mxm << 1 . Firstly, consider the case when we have 
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ki( 1
ix +δ)-ki( 1

ix )≤ kj( 1
jx )-kj( 1

jx -δ),               (6) 

 

where by definition ),min( 11

jjii mxxM −−=δ . Then we can set: 
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Let us denote by 2X the new solution obtained after replacing 1
ix  by 2

ix  

and 1
jx  by 2

jx  in X
1
. Then adding (7) and (8) we see that (2) and (3) still hold 

for 2X . Besides that, ki( 2
ix )+kj( 2

jx )≤ kj( 1
jx )+ki( 1

ix ), so 2X  is optimal  too.  

Now, if (6) does not hold, analogously we can treat the case when  
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where by definition ),min( 11
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Finally, let us prove that other options are impossible, i.e. an assumption 

that both 
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hold, will lead to a contradiction. Indeed, since kj(xj) is concave, so 

δ
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Combining this with (11) we conclude that: 
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which implies a contradiction with concavity of ki(xi).  

Thus, either (6) or (9) must hold, and consequently we always have: 
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 Continuing the same process will lead to a solution X  indicated in the 

statement of the theorem. Q.E.D. 

 

Since A, mi, Mi  are integer, so by Theorem 2 there exists an optimal 

solution where all xi, i=1,2,…,n are integer also. Thus the original 

continuous problem can be considered as a discrete optimization problem. In 

our analysis of this problem we will use the standard dynamic programming 

technique. Let us consider all possible integer values of variable xn. 

1. If xn=0, then 00 =)(nk , and the problem reduces to the following: 
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Let ),( apϕ denote the optimal objective function value for the problem: 
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According to this notation in case xn=0 we have ),( Anϕ = ),1( An −ϕ . 

2. If we consider some fixed nnn Mxm ≤≤ then the problem (1)-(3) 

reduces to: 
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Thus, if the positive shipment xn is fixed then we need to solve the 

problem for n-1 providers and the smaller amount of product remaining. 

Combining the cases 1 and 2 what we have to find is the value of xn that 

minimizes the goal function: 
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To find ),( Anϕ  here we need the solutions to all problems of dimension 

n-1, which may be computed recursively through the problem with n-2 

variables, etc. Finally we have the general formula: 
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The computations with this formula are carried out through double loop: 

with p=1,2,…,n, and with a=0,1,2,…,A, assuming the initial conditions 

ϕ(0,0)=0, Aaa ,...,2,1,),0( =∞=ϕ .  

Calculation of ),( apϕ  requires not more than 2+− pp mM  comparison 

operations. So the total number of comparisons for solving (1)-(3) is 

bounded by ∑
=

+−⋅
n

p
pp mMA

1

)2( . 

Thus, there exists a pseudo-polynomial time algorithm for solving this 

problem (here we imply that functions ki(xi), i=1,2,…,n are computable in 

polynomial time). In fact if we divide the problem data input string into two 

parts: substring s’ for encoding the functions k1, k2…,kn and substring s for 

the rest of the data, then even in case of unbounded growth of the values of 

numeric parameters encoded in s’ the running time will remain polynomial 

in the length of s. Therefore we have 

Theorem 3.  Let s be the input substring, encoding A, m1, m2,…, mn, M1, 

M2,…, Mn . If functions ki(xi), i=1,2,…,n are polynomial time computable in 

length of s for all Axi ≤≤0 , then there exists a pseudo-polynomial time 

algorithm (with respect to input substring s) solving problem (1)-(3). 

Note that the complete enumeration of solutions has the time complexity 

O(n3
n-1

). If A is large and n is small, the complete enumeration method may 

be advantageous. However with bounded A, m1, m2,…, mn, M1, M2,…, Mn the 

running time of the dynamic programming will be smaller by an exponential 

factor. 
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3. SOME APPROACHES TO SOLVING MORE 

GENERAL PROBLEMS  

It is interesting to consider the extension of the concave cost supply 

management problem to the case with multiple manufacturing units as it was 

formulated in [2]: 
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Here n is the number of providers and m is the number of manufacturing 

units, ijx is the quantity of product delivered to the manufacturing unit j from 

provider i; Aj is the total amount of product required for the manufacturing 

unit j; mij is the minimum quantity the provider i  is prepared to deliver to 

the manufacturing unit j; Mi is the maximum quantity the provider i  is able 

to deliver to the manufacturing units. The cost ( )ijij xk  is  
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where 0≥ija  and 0)( ≥ijij xg  are concave and non-decreasing functions 

when ijx is positive, i=1,…,m, j=1,…,n. 

The necessary conditions of the optimum formulated in [2] for this 

problem permit the development of a dynamic programming approach 

similar to that described above. However the time and memory resources 

required by such an algorithm might present serious obstacles. In this 

connection it seems to be appropriate to use the piecewise linear 

approximations of the functions ( )ijij xk , since then the problem can be 

formulated as an integer linear programming problem. For example in the 

case of linear costs kij(xij) = cijxij, i=1,…,m, j=1,…,n introducing 

supplementary Boolean variables zij we obtain the following mixed-integer 

problem: 
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A number of approaches may be used for solving such problem: the 

branch and bound methods of Land and Doig type (see e.g. [7]), the Benders 

decomposition method and cutting plane algorithms (see e.g. [1,4]), L-class 

enumeration algorithms [5,6], etc. Note that a further generalization of 

problem (12)-(15) may be done through the assumption that the size of 

shipment xij belongs to a range consisting of several intervals for all i and j. 

The approaches mentioned above could be extended to this case as well.  

4. CONCLUSIONS  

The concave cost supply management problem with single 

manufacturing unit was shown to be NP-hard and a dynamic programming 

pseudo-polynomial time algorithm was suggested for it. The possible 

approaches to solving the more general problem with multiple 

manufacturing units were discussed.  

We expect that the further research will be aimed at the elaboration of 

the solution methods discussed in Sect. 3 and their theoretical and 

experimental comparison. Another direction for the further research is the 

analysis of a problem with lower bounds on consumption of product instead 

of the exact conditions (2) and (13) assumed in this chapter. In such a 

modification (at least in the single-unit case) the feasible solution is easier to 

find and fast  approximation algorithms are appropriate. 
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