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Abstract. Our main result is a characterization of the finitely
generated groups in the quasivariety generated by a non-cyclic free
metabelian group from three different points of view: In terms of
wreath products, in terms of module theoretic properties of their
Fitting subgroups, and in terms of quasi-identities.

1. Introduction

In this paper we study the finitely generated groups in the quasivari-

ety of groups qvar(F ) that is generated by a non-cyclic free metabelian

group F . We mention at once that qvar(F ) does not depend on the

rank of the generating free metabelian group since all free metabelian

groups of rank greater than one generate the same quasivariety (see

Section 2.3). Our main result, Theorem B in Section 7, is a characteri-

zation of these groups from different points of view: In terms of wreath

products (any finitely generated group in qvar(F ) can be embedded

into a direct product of wreath products of free abelian groups), in

terms of modules (the groups in question are determined by module

theoretic properties of their Fitting subgroups), and, finally, in terms

of quasi-identities (we exhibit a recursive system of quasi-identities that

determines qvar(F )). The motivation for this work came from algebraic

geometry over groups, a new concept in group theory that has recently

been developed in [1] and [8]. A central role in this new theory is

played by algebraic sets over groups and their coordinate groups. By a

result of [8], the coordinate groups of algebraic sets over free metabelian

groups are precisely the finitely generated groups in the quasivariety

qvar(F ). The present paper has been written with this application in

mind, but we hope that our main result will be of independent interest

as a contribution to the theory of quasivarieties.
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In the proof of our main theorem we make use of results of Chapuis [3]

on the universal closure ucl(F ), that is the class of all groups satisfying

the universal theory of a non-cyclic free metabelian group. In fact, in

Section 7 we prove a modification of the main result of [3], Theorem

A, which gives a characterization of the finitely generated groups in

ucl(F ) in terms similar to those used in Theorem B.

The paper is organized as follows. Notation and some preliminary

notions will be introduced in Section 2. In Sections 3 and 4 we introduce

and discuss specific classes of rings and modules, so called A-rings and

A-modules, and these are then used in Section 5 to define metabelian

A-groups, one of the central concepts of this paper. In Section 6 we

give the defining system of quasi-identities for qvar(F ), and the final

Section 7 is devoted to the proofs of Theorems A and B.

Acknowledgment. Most of this work was carried out while the first

author was visiting UMIST. Financial support from EPSRC (Visiting

Fellowship GR/M98951) is gratefully acknowledged.

2. Notation and preliminary notions

2.1. Groups. We write An for the free abelian group of rank n, and

sometimes, when the rank is understood, we use A. By Pr(An) we

denote the set of all primitive elements in An, and we let P(An) denote

the set of all pure (or isolated) subgroups of An (which is the same as

the set of all direct factors).

If G is a group, we let Fit(G) denote the Fitting subgroup of G, we

write G′ for the commutator subgroup of G, and Z(G) for the centre.

We use standard notation for conjugates and commutators: gh = h−1gh

and [g, h] = g−1h−1gh for g, h ∈ G. If N is an abelian normal subgroup

of G, then N carries the structure of a right ZG-module via conjugation

in G, and since N itself acts trivially, this is, in fact, a Z(G/N)-module.

In this situation we will use multiplicative notation for the module N

with the acting elements of the group ring appearing as exponents.

Thus, if u ∈ N, α =
∑k

i=1 nigi ∈ Z(G/N) and
∑k

i=1 nigi ∈ ZG with

ni ∈ Z, gi ∈ G and gi = giN ∈ G/N , then

uα = u
P k

i=1 nigi = u
P k

i=1 nigi = (un1)g1(un2)g2 . . . (unk)gk .

By Wr,s we denote the restricted wreath product of two free abelian

groups of ranks r and s, respectively: Wr,s = ArwrAs. For our purposes
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it will be convenient to regard Wr,s as the semidirect product of As and

a (multiplicatively written) free right ZAs-module T of rank r (the base

group). The elements of Wr,s will be written as ordered pairs (a, t) with

a ∈ As and t ∈ T . Elementary properties of the wreath products Wr,s

will be used without special references being given.

An important concept in this paper is the notion of a ρ-group which

is due to Chapuis [3].

Definition. A group G is called a ρ-group if the following three con-

ditions hold.

(i) G is a torsion-free metabelian group,

(ii) the Fitting subgroup Fit(G) is abelian and isolated in G,

(iii) Fit(G) is a torsion-free module over Z(G/Fit(G)).

The wreath products Wr,s are obvious examples of ρ-groups. An-

other important notion in this paper is that of commutation-transitive

groups.

Definition. A groupG is called commutation-transitive (or CT-group)

if satisfies the axiom

CT : ∀x, y, z((x 6= 1) ∧ [x, y] = 1 ∧ [x, z] = 1 =⇒ [y, z] = 1).

In other words, G is commutation-transitive if any two elements y, z ∈
G which commute with a third element x (x 6= 1) of G, commute with

each other.

Finally, we write F for a non-cyclic free metabelian group, and we

use Fn when we wish to specify the rank. We will assume that the

reader is familiar with basic facts about free metabelian groups. In

particular, for Fn we have that Fn/F
′
n
∼= An, and that Fit(Fn) = F ′

n.

Moreover Fit(Fn) is a free abelian group, and will be regarded as a

ZAn-module via conjugation in Fn. An important tool in studying free

metabelian groups is the well-known Magnus embedding

µ : Fn → Wn,n

which is given by

xi 7→ (ai, ti) (i = 1, . . . , n)

where the xi and ai denote the the free generators of Fn and An, respec-

tively, and the ti denote the free module-generators of the base group
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T of Wn,n. The restriction of µ to Fit(Fn) maps this module isomor-

phically into the free module T . It follows that Fit(Fn) is a torsion-free

ZAn-module. The embedding µ is originally due to Magnus [6] who

used a certain matrix group instead of Wn,n. Using the Magnus em-

bedding, it is not hard to show some further well-known facts about

free metabelian groups. In particular, one gets easily that these groups

are linear. For reference purposes we mention the following well-known

result about centralizers in Fn, which is a special case of a theorem due

to Mal’cev [7]. For the centralizer C(g) of an element g ∈ Fn with

g 6= 1 one has C(g) = F ′
n if g ∈ F ′

n, and if g /∈ F ′
n, then C(g) coincides

with the maximal cyclic subgroup of Fn containing g. This implies,

in particular, that the centre of Fn is trivial and that Fn satisfies the

axiom CT.

2.2. Rings and modules. All rings in this paper are factor rings of

the integral group rings Rn = ZAn, and all modules are (right) mod-

ules over these rings. In particular, all rings and all finitely generated

modules under consideration will be Noetherian. When working in

groups, where abelian normal subgroups will be regarded as modules

via conjugation (as explained in Section 2.1), modules will be written

multiplicatively, but otherwise (here and in Section 4) we shall use the

common additive notation.

For a subgroup B ≤ An, we let ∆B denote the ideal of Rn that is

generated by all elements of the form 1− b where b ∈ B. In particular,

∆An is the augmentation ideal, that is the kernel of the augmentation

map ε : ZAn → Z. It is well-known that, if B is generated by its

elements b1, b2, . . ., then the elements 1− b1, 1− b2, . . . generate ∆B as

an ideal.

Any element α ∈ Rn has a unique expression as a linear combination

(2.1) α =
∑
g∈An

ngg

where ng ∈ Z and only finitely many of the coefficients ng are non-zero.

We define the support of α by setting supp(α) = {g ∈ G ; ng 6= 0}, and

the length of α by |α| = | supp(α)|. Now we introduce the important

notion of the contents C(α) of α. For α as in (2.1) let supp+(α) =

{g ∈ G ; ng > 0} and supp−(α) = {h ∈ G ; nh < 0}. If supp+(α) = ∅
or supp−(α) = ∅, we set C(α) = ∅. Otherwise, for any pair of elements

g ∈ supp+(α), h ∈ supp−(α), let b ∈ Pr(An) be the highest possible
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root of gh−1 in An, say gh−1 = blg,h for some integer lg,h ≥ 1. Then

C(α) is defined as the set of all such primitive elements b. Thus

C(α) = {b ∈ Pr(An) ;

blg,h = gh−1 for some lg,h ≥ 1, g ∈ supp+(α), h ∈ supp−(α)}.

It is clear that C(α) is a finite set. Note that C(α) 6= ∅ for all non-zero

α ∈ ∆An .

We need some standard material from commutative algebra about

primary decomposition of Noetherian modules. All of this can be

found, for example, in [2] or [5]. The following notation will be used.

Let S be a commutative ring and M a (right) S-module. For u ∈ M

we write Ann(u) for the annihilator of u,

Ann(u) = {α ∈ S ; uα = 0},

we write Ass(M) for the prime ideals of S that are associated with M ,

Ass(M) = the set of prime ideals associated with M,

if I is an ideal in S, we set

M [I] = {u ∈M ; uα = 0 for all α ∈ I},

and, for ideals I, J C S we set

(I : J) = {β ∈ S ; βα ∈ I for all α ∈ J}.

2.3. Quasivarieties and Universal Closures. We shall work with

the standard language L of group theory consisting of a symbol · for

multiplication, a symbol −1 for inversion, and a symbol 1 for the iden-

tity. A universal sentence in L is formula of the form

∀x1, . . . , xn(
s∨

j=1

t∧
i=1

(uij(x) = 1 ∧ wij(x) 6= 1))

where uij(x) and uij(x) are group words in the variables x1, . . . , xn.

The universal theory Th∀(G) of a group G consists of all universal

sentences in L which are true on G, and the universal closure ucl(G)

of G consists of all groups H such that all universal sentences from

Th∀(G) are also true on H.

A quasi-identity in L is a formula of the form

∀x1, . . . , xn((
t∧

i=1

ui(x) = 1) ⇒ s(x) = 1)
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where ui(x) and s(x) are group words in the variables x1, . . . , xn. A

quasivariety of groups is a class groups that can be axiomatized by a set

of quasi-identities. In other words, a class of groups is a quasivariety if

there exists a set of quasi-identities such that the class consists of all

groups satisfying all of these quasi-identities. The quasivariety qvar(G)

generated by a group G is smallest quasivariety containing G.

In this paper we focus on non-cyclic free metabelian groups, their

universal closures, and, in particular, the quasivarieties they generate.

It is known (see [4]) that ucl(Fn) = ucl(Fm) for all n,m ≥ 2, and

hence it makes good sense to speak of the universal closure ucl(F ) of

a non-cyclic free metabelian group. As we have mentioned at the very

beginning, the situation is similar for quasivarieties.

Lemma 2.1. The quasivarieties qvar(Fn) and qvar(Fm) coincide for

all n,m ≥ 2.

Proof. We show that qvar(Fn) = qvar(F2) for all n > 2. Since F2 is a

subgroup of Fn, we have obviously that qvar(F2) ⊆ qvar(Fn). On the

other hand, since Fn is, for all n ≥ 2, residually F2 (see, for example,

[9, 36.35]), the inverse inclusion follows immediately from the fact that

qvar(F2) consists precisely of all groups which are locally residually

F2. The latter holds, in fact, for a large class of groups, so-called

equationally Noetherian groups, which includes our F2 by [1, Theorem

B1] because free metabelian groups of finite rank are linear (see Section

2.1). The required fact itself is implicitly contained in [8]. On noting

that (in the terminology of [8]) equationally Noetherian groups are qω-

compact, it follows by combining Theorem B1 and Lemma 7 of [8]. �

Thus, it makes again good sense to speak of the quasivariety qvar(F )

generated by a non-cyclic free matabelian group.

3. A-rings

Definition. A ring S is called an A-ring if

(i) S is a factor ring of Rn for some natural number n,

(ii) Ass(S) = {∆B1 ,∆B2 , . . . ,∆Bk
} with B1, B2, .., Bk ∈ P(An),

(iii) S is semisimple.

Lemma 3.1. Every primary A-ring is isomorphic to Rm for some

natural number m.
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Proof. Let S = Rn/I for some natural number n and some ideal I C

Rn, and let Ass(S) = {∆B} with B ∈ P(An). Then ∆l
B ⊆ I ⊆ ∆B

for some natural number l. Since S has no nilpotent elements, we must

have I = ∆B. But then S ∼= Rm where m = n− rank(B). �

Lemma 3.2. Let S be an arbitrary A-ring. Then there exist natural

numbers n1, n2, . . . , nq such that S is the subdirect sum of the rings

Rn1 , Rn2 , . . . , Rnq .

Proof. Let S = Rn/I with Ass(S) = {∆B1 , . . . ,∆Bk
} and let I =

I1 ∩ I2 ∩ . . . ∩ Iq be a primary decomposition of the ideal I. Then, for

each j (1 ≤ j ≤ q) there are natural numbers ij ∈ {1, . . . , k} and

lj ≥ 1 such that Ij ⊆ ∆Bij
∈ Ass(S) and ∆

lj
Bij

⊆ I ⊆ ∆Bij
. We claim

that, in fact,

(3.1) I = ∆Bi1
∩∆Bi2

∩ . . . ∩∆Biq
.

Indeed, if α ∈ ∆Bi1
∩∆Bi2

∩ . . .∩∆Biq
, then αl ∈ I for l = Πq

j=1lij , and

since S has no nilpotent elements this gives α ∈ I. But (3.1) guarantees

that S is isomorphic to the subdirect sum of the rings R/∆Bij
(j =

1, . . . , q), and since R/∆Bij

∼= Rnj
with nj = n−rank(Bij), the Lemma

follows. �

Definition. An ideal I of an A-ring S is termed a radical ideal if the

quotient ring S/I is again an A-ring.

Our next aim is to show that the intersection of any family of radical

ideals in an A-ring is again a radical ideal, the main result of this

section. We need some auxiliary results.

Lemma 3.3. Let B1, B2, . . . , Bs ∈ P(An). Then the intersection I =⋂s
i=1 ∆Bi

is a radical ideal in Rn.

Proof. Let S = Rn/I. Then Ass(S) = {∆B1 , . . . ,∆Bs} and the ring S

is semisimple. Hence S is an A-ring. �

Recall the definition of C(α), the contents of α ∈ Rn (see Section

2.2).

Lemma 3.4. Let B ∈ P(An) and α ∈ ∆B with α 6= 0. Then there

exists an element b ∈ C(α) such that b ∈ B.

Proof. Consider the factor ring Rn/∆B, and, for any β ∈ Rn, let β

denote the image of β under the natural homomorphism Rn → Rn/∆B.
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Since α ∈ ∆B, we have α = 0. Then, for any g ∈ supp+(α), there exists

a h ∈ supp−(α) such that g = h. Consequently, gh−1 ∈ B, and since B

is a pure subgroup, the element b ∈ C(α) with bl = gh−1 also belongs

to B. �

Now we introduce the associator Ass(α) of an element α ∈ Rn as

follows. If α /∈ ∆An , we set Ass(α) = ∅, and if α ∈ ∆An , we define

Ass(α) as the set of all B ∈ P(An) such that α ∈ ∆B, but α /∈ ∆C for

all proper pure subgroups C of B. Thus

Ass(α) = {B ∈ P(An) ; α ∈ ∆B, α /∈ ∆C ∀ C ∈ P(B) \B}.

Lemma 3.5. For all α ∈ ∆An , Ass(α) is a finite set.

Proof. We use induction on n. The lemma is trivial if n = 1, so let

n > 1, and suppose that for some α ∈ ∆An the associator Ass(α) =

{Bi , i ∈ I} consists of infinitely many distinct subgroups Bi ∈ P(An).

By Lemma 3.4, each Bi contains an element of the finite set C(α),

and hence there is a b ∈ C(α) that is contained in infinitely many

of the Bi, say b ∈ Bi for all i ∈ J where J is an infinite subset of

I. Consider the natural homomorphism ϕ : An → An/〈b〉. Since b

is a primitive element, An/〈b〉 is a free abelian group of rank n − 1.

It is clear that the images Biϕ (i ∈ J) are distinct in An/〈b〉. Now

let ϕ : ZAn → Z(An/〈b〉) denote the corresponding homomorphism of

integral group rings, and let α = αϕ. Clearly, α ∈ ∆An/〈b〉. Moreover,

it is plain that, if B ∈ Ass(α), then Bϕ ∈ Ass(α), and hence the latter

contains the infinite set {Biϕ , i ∈ J}. Since Z(An/〈b〉) ∼= ZAn−1, this

contradicts the inductive hypothesis. The lemma follows. �

Definition. (The radical of a non-zero element α ∈ Rn) Let α ∈
Rn (α 6= 0). If α /∈ ∆Rn we set Rad(α) = Rn, and if α ∈ ∆Rn we set

Rad(α) =
⋂

B∈Ass(α)

∆B.

Note that, by Lemma 3.3, Rad(α) is a radical ideal.

Lemma 3.6. The radical Rad(α) is the smallest radical ideal of Rn

containing α.

Proof. Let I be a radical ideal of Rn, and let α ∈ I. Then S = Rn/I is

an A-ring. In the proof of Lemma 3.2 we have seen that either I = Rn

or I = ∆Bi1
∩ . . .∩∆Biq

with ∆Bi1
, . . . ,∆Biq

∈ Ass(S). But if α ∈ ∆Bij
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then Bij contains a subgroup C ∈ Ass(α), and hence ∆Bij
⊇ ∆C .

Consequently,

I = ∆Bi1
∩ . . . ∩∆Biq

⊇
⋂

C∈Ass(α)

∆C = Rad(α),

and the lemma follows. �

The following technical result will be used in the proof of Proposition

3.1 below.

Lemma 3.7. Let α = n1g1+· · ·+nlgl ∈ Rn with supp(α) = {g1, . . . , gl}
and l > 1, and let k be a positive integer with k > |n1| + · · · + |nl|.
Then the equation xk = α has no solution in Rn.

Proof. Since the infinite cyclic group A1 = 〈a〉 discriminates An, there

is a homomorphism ϕ : Rn → R1 = ZA1 such that

αϕ = n1a
λ1 + · · ·+ nla

λl

where λ1, . . . , λl are pairwise distinct integers. Without loss of general-

ity we may assume that λ1 < · · · < λl. Suppose that there is a β ∈ Rn

such that βk = α. Then (βϕ)k = αϕ. Let

βϕ = m1a
ν1 + · · ·+mqa

νq

where m1, . . . ,mq are non-zero integer coefficients and ν1 < · · · < νq.

Then (βϕ)k = αϕ implies that λ1 = kν1 and λ2 = (k − 1)ν1 + ν2. The

coefficients of αϕ and (βϕ)k at aλ2 = a(k−1)ν1+ν2 are n2 and kmk−1
1 m2,

respectively. But our assumption on k gives n2 6= kmk−1
1 m2, so (βϕ)k 6=

αϕ, a contradiction. The lemma follows. �

Proposition 3.1. Let Y be a finite set of elements in Rn. Then there

exists a minimal radical ideal of Rn containing Y . This ideal will be

called the radical of Y , and denoted by Rad(Y ).

Proof. We need to establish the existence of a minimal radical ideal

containing Y . It is sufficient to consider the case where Y = {α, β}
consists of two non-zero elements with α, β ∈ ∆An . Then |α| ≥ 2. Let

α = n1g1 + · · ·+ nlgl ∈ Rn with suppα = {g1, . . . , gl} (l > 1), let k be

a positive integer with k > |n1| + · · · + |nl|, and consider the element

γ = α − βk. If I is a radical ideal with α, β ∈ I, then γ ∈ I, and

hence Rad(γ) ⊆ I by Lemma 3.6. It is therefore sufficient to show that

α, β ∈ Rad(γ). This is clear when Rad(γ) = Rn. Now suppose that

γ ∈ ∆An , and let B ∈ Ass(γ). Let α, β, γ denote the images of α, β, γ
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under the natural homomorphism Rn → Rn/∆B. Then α−βk
= γ = 0

(since γ ∈ ∆B), and hence α = β
k

in Rn/∆B. The latter is isomorphic

to Rm where m = n−rankB. It is easily seen that, if α 6= 0, then α and

k satisfy the conditions of Lemma 3.7 (applied in Rm), and the equation

α = β
k

contradicts the conclusion of this lemma. Consequently, we

must have α = 0. But then β = 0 as well, and hence α, β ∈ ∆B for all

B ∈ Ass(γ). This gives that α, β ∈ Rad(γ) as required. �

Corollary 3.1. Let Y be an arbitrary subset of Rn. Then there exists

a minimal radical ideal Rad(Y ) of Rn that contains Y . Moreover, there

exists an element γ ∈ Rn such that Rad(Y ) = Rad(γ).

Proof. The case where Y is a finite set is covered by the Proposition

3.1. Now suppose that Y is infinite. Since Y is countable, it can be

ordered (of type ω): Y = {α1, α2, α3, . . .}. Let Yi = {α1, . . . , αi, }, and

let Rad(Yi) = Rad(γi), i = 1, 2, . . .. Then Rad(Y1) ⊆ Rad(Y2) ⊆ . . .,

and the corollary follows since Rn is Noetherian. �

Now we are ready for the main result of this section.

Theorem 3.1. Let S be an A-ring, and let Ii (i ∈ J) be a family of

radical ideals in S. Then the intersection I =
⋂

i∈J Ii is also a radical

ideal in S.

Proof. Suppose that the A-ring S is a factor ring of Rn. It is easily seen

that an ideal I of S is radical if and only if its full inverse image under

the surjection Rn → S is a radical ideal in Rn. It is therefore sufficient

to prove the theorem in the case where S = Rn. Moreover, by Lemma

3.2, it is sufficient to consider the case where Ii = ∆Bi
(i ∈ J) with

Bi ∈ P(An). Let C =
⋂

i∈J Bi. Then C is a pure subgroup of An, that

is C ∈ P(An). If C 6= 1, then ∆C ⊆ ∆Bi
for all i ∈ J , and hence it is

sufficient to prove the Theorem in the factor ring Rn/∆C
∼= Rn−rank C .

We may assume that C = 1.

Now, if I = {0}, the theorem is true since {0} is a radical ideal. If

I 6= {0}, the theorem will be proved once we show that I = Rad(I).

By Proposition 3.1 and the corollary thereafter, we have that Rad(I) =

Rad(γ) for some γ ∈ I. Hence, for any i ∈ J , γ ∈ Ii, and Rad(γ) ⊆
Ii (since Ii is a radical ideal). Therefore Rad(γ) ⊆

⋂
i∈J Ii, and the

theorem follows. �

We conclude this section with the following
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Proposition 3.2. For any finite set Y in Rn, there is an algorithm

for computing a generating set for Rad(Y ) as an ideal.

Proof. By Proposition 3.1, Rad(Y ) = Rad(γ) for some γ ∈ Rn. More-

over, the proof of Proposition 3.1 provides an algorithm for deter-

mining such a γ for any given Y . Once we have γ, we can deter-

mine the contents C(γ), and then we can compute the associator

Ass(γ) = {B1, . . . , Bk}. More precisely, we can find free generating

sets for the free abelian groups B1, . . . , Bk (and hence generating sets

for the ideals ∆B1 , . . . ,∆Bk
). Indeed, by Lemma 3.4, any B ∈ Ass(γ)

contains an element b of the finite set C(γ), and then we can work in

Z(An/〈b〉, the group ring of a free abelian group of smaller rank (details

are left to the reader). By definition, Rad(γ) =
⋂k

i=1 ∆Bi
, and now it

remains to appeal to a result by Seidenberg [10] which says that there

is an algorithm for determining the generators of the intersection of a

finite set of ideals in Rn from the generators of those ideals. �

4. A-modules

Definition. A finitely generated Rn-module M is called an A-module,

if it satisfies the following two conditions

(i) for every non-zero element u ∈M , the factor ring Rn/Ann(u) is

an A -ring,

(ii) for any subgroup C ∈ P(An), M∆C ∩M [∆C ] = {0}.

(See Section 2.2 for the definition of M [∆C ].)

Remark 4.1. In view of the results of Section 3, the first condition in

the definition of an A-module is equivalent to either of the following.

(i’) For any u ∈ M , either Ann(u) = Rn or Ann(u) =
⋂

∆Bi
for

suitable B1, . . . , Bk ∈ P(An).

(i”) For any u ∈ M , the annihilator Ann(u) is a radical ideal, and

hence there is an element γ ∈ Rn such that Ann(u) = Rad(γ).

Lemma 4.1. For any primary A -module M there exists a unique natu-

ral number n such that M is a torsion-free Rn-module, and, conversely,

any finitely generated torsion-free Rn-module M is an A -module.

Proof. Suppose M is a primary Rm-module with Ass(M) = {∆B} with

B ∈ P(Am). Then for every non-zero element u ∈ M , the factor

ring Rk/Ann(u) is a primary A-ring. By Lemma 3.1, S ∼= Rn where



12 VLADIMIR REMESLENNIKOV AND RALPH STÖHR

n = m−rank(B), and hence M is a torsion-free Rn-module as required.

The second part of the lemma is trivial. �

The main result of this section is the following

Theorem 4.1. Let M be an arbitrary A-module. Then there exist nat-

ural numbers n1, n2, . . . , nk such that M is the subdirect sum of modules

M1,M2, . . . ,Mk where each Mi (i = 1, 2, . . . , k) is a torsion-free module

for Rni
.

Before we embark on the proof of this theorem, we recall some facts

about the primary decomposition of the module M , and prove some

auxiliary results. Let M be an A-module over Rn with

(4.1) Ass(M) = {∆B1 , . . . ,∆Bk
}

where B1, . . . , Bk ∈ P(An). Then there is a reduced primary decom-

position of the zero-submodule of M of the form

(4.2) {0} =
k⋂

i=1

Ni with Ass(M/Ni) = ∆Bi
.

Moreover, for each i (1 ≤ i ≤ k), one has Ass(Ni) =
⋃

j 6=i{∆Bj
} and⋂

j 6=iNj 6= {0} (see [2, Chapter 4, §2, Proposition 4]).

Definition. Let M be an A-module. We say that a primary decompo-

sition N =
⋂l

i=1Qi of a submodule N of M is an A-primary decompo-

sition if all primary factor modules M/Qi (i = 1, . . . , l) are themselves

A-modules.

In view of Lemma 4.1, Theorem 4.1 will be proved once we show

that the zero-submodule of M has an A-primary decomposition {0} =⋂l
i=1Qi, i.e. for all non-zero elements u ∈ M/Qi, one has Ann(u) =

∆Bi
. Indeed, in this case M/Qi is a torsion-free module over R =

Rn/∆Bi
∼= Rni

where ni = n− rank(Bi).

Now let Mi = M/Ni (i = 1, . . . , k), where the Ni are as in (4.2). We

will assume that the module M is canonically embedded in the direct

sum M1 ⊕ · · · ⊕Mk, and set M (i) = M ∩Mi.

Lemma 4.2. Suppose that ∆B1 is a maximal (with respect to inclusion)

ideal in Ass(M). Then M [∆B1 ] = M (1).

Proof. Let 0 6= u ∈ M [∆B1 ]. Since ∆B1 is a maximal ideal, there

exists an element α ∈ ∆B1 that is not contained in the other ideals in
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Ass(M). Let u = (u1, . . . , uk) and suppose that ui 6= 0. If i 6= 1, then

uiα 6= 0 in Mi since α /∈ ∆Bi
, and, consequently, multiplication by α

is an injective map on Mi. It follows that u2 = · · · = uk = 0 and so

u = (u1, 0, . . . , 0) ∈M (1).

Now let u = (u1, 0, . . . , 0) ∈ M (1). Since α ∈ ∆B1 , multiplication by

α is a nilpotent map on M1. Hence uαt = 0 for some natural number

t, so αt ∈ Ann(u). But since Ann(u) is the intersection of prime ideals,

it follows that α ∈ Ann(u), and, consequently, u ∈M [∆B1 ]. �

Now consider the factor module M/M (1). Since M (1) =
⋂k

i=2Ni, this

is a reduced primary decomposition of M (1) and M2, . . . ,Mk are the

corresponding primary components for M/M (1). If we can show that

M/M (1) is an A-module, Theorem 4.1 can be deduced relatively easily

from this fact.

Let u be a non-zero element in M/M (1). Take u ∈M such that u =

u+M (1). Let Ann(u) =
⋂

j∈J ∆Bj
where J is a subset of {1, 2, . . . , k}.

Lemma 4.3. In the notation introduced above, Ann(u) =
⋂

j∈J0
∆Bj

,

where J0 ⊆ J , and if j ∈ J0, then ∆Bj
does not contain ∆B1.

Proof. First we show that

Ann(u) = (Ann(u) : ∆B1)

(see Section 2.2 for the definition of (Ann(u) : ∆B1)). Indeed, suppose

that β ∈ Ann(u). Then uβ = u′ ∈ M (1). But M (1) = M [∆B1 ] by

Lemma 4.2. Hence u′γ = uβγ = 0 for all γ ∈ ∆B1 , in other words

β ∈ (Ann(u) : ∆B1). Conversely, if β ∈ (Ann(u) : ∆B1), then uβγ = 0

for all γ ∈ ∆B1 , which is the same as to say that uβ ∈M [∆B1 ]. Again,

by Lemma 4.2, this gives uβ ∈M (1), and hence β ∈ Ann(u).

Our next aim is to determine the ideal (Ann(u) : ∆B1). Since

Ann(u) ⊆ Ann(u), it is sufficient to calculate ({0} : ∆B1) in the factor

ring R = Rn/Ann(u), and then to take the full inverse image in Rn.

For, we consider the canonical embedding of R into
⊕

j∈J Rn/∆Bj
. If

j ∈ J0, the image of ∆B1 is a non-zero ideal in Rn/∆Bj
, and hence,

if α ∈ ({0} : ∆B1), then α ∈ ∆Bj
, and, consequently, ({0} : ∆B1) ⊆⋂

j∈J0
∆Bj

. On the other hand, if α ∈
⋂

j∈J0
∆Bj

, then α ∈ ∆B1 in

R. �

Lemma 4.4. The module M = M/M (1) is an A-module.
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Proof. By Lemma 4.3, M satisfies the condition (i’) in Remark 4.1,

which is equivalent to condition (i) in the definition of an A-module.

It is therefore sufficient to check that M satisfies condition (ii) in that

definition. Let C be a non-trivial pure subgroup of An, let u ∈M∆C ∩
M [∆C ], and let u be an inverse image of u in M . Since u ∈ M∆C ,

we have u = u1 + u2 where u1 ∈ M∆C and u2 ∈ M (1) = M [∆B1 ].

Consequently, for all b ∈ B1, we have u(b− 1) = u1(b− 1) ∈M∆C . On

the other hand, since u ∈ M [∆C ], we have u(c− 1) ∈ M (1) = M [∆B1 ]

for all c ∈ C. But then u(c − 1)(b − 1) = 0 for all b ∈ B1. Hence

u(b − 1) ∈ M [∆C ]. It follows that u(b − 1) ∈ M∆C ∩M [∆C ] for all

b ∈ B1. But since M is an A-module, this intersection is zero. Hence

u ∈M [∆B1 ] = M (1) and therefore u = 0. �

Now we turn to the proof of Theorem 4.1.

Proof. Let M be an A-module over Rn with Ass(M) as in (4.1) and

with a reduced primary decomposition of the zero-submodule as in

(4.2). We show by induction on k = |Ass(M)| that the zero-submodule

of M admits an A-primary decomposition {0} =
⋂k

i=1Qi. If k = 1, this

is ensured by Lemma 4.1. Now let k > 1. We may assume that ∆B1 is a

maximal (with respect to inclusion) element in the partially ordered set

Ass(M). Then, by Lemma 4.3 and Lemma 4.4, the factor module M =

M/M (1) is an A-module, Ass(M) ⊂ Ass(M), and |Ass(M)| = k − 1.

Hence, by induction, for the submodule M (1) there exists the required

primary decomposition {M (1)} =
⋂k

i=2Qi. If there is another maximal

element in the partially ordered set Ass(M), ∆B2 say, we consider the

reduced primary decomposition {0} = N1 ∩
⋂k

i=2Qi , the submodule

M (2) and the factor module M̃ = M/M (2) (with regard to this new

primary decomposition). By Lemma 4.4, M̃ is an A-module, and hence

there is an A-primary decomposition M (2) = Q′
1 ∩Q′

3 ∩ · · · ∩Q′
k. But

then {0} = Q′
1 ∩Q2 ∩Q′

3 ∩ · · · ∩Q′
k is an A-primary decomposition for

M .

Now suppose that ∆B1 is the only maximal element in Ass(M), so

∆Bi
⊆ ∆B1 for i = 1, . . . , k. Using the A-primary decomposition

M (1) =
⋂k

i=2Qi, we construct an A-primary decomposition for M .

For, we set D = Rn \∆B1 and we denote by Q′
1 the submodule gener-

ated by the elements v
α

with v ∈ M∆B1 and α ∈ D, where v
α

denotes

the unique solution of the equation xα = v if it exist in M . This is the

so-called D-isolator of the submodule M∆B1 in M . Let M1 = M/Q′
1.
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We now show that M1 is a primary A-module. Let u = u + Q′
1 be a

non-zero element of M1. First of all we show that Ann(u) = ∆B1 . It is

clear that Ann(u) ⊇ ∆B1 since Q′
1 ⊇M∆B1 . If there exists an element

α ∈ Ann(u)\∆B1 , then uα = 0, and hence uα ∈ Q′
1. Let uα = v. Then

u = v
α

and u ∈ Q′
1 by the definition of that submodule. It follows that

M1 is a torsion free module over the ring Rn/∆B1 , and now Lemma 4.1

gives that M1 is a primary A-module.

Finally, we check that Q′
1 ∩M (1) = {0}. Suppose u ∈ Q′

1 ∩M (1).

For any element u in Q′
1 there exists an element α ∈ D such that

uα ∈ M∆B1 . It is clear that uα ∈ M (1) = M [∆B1 ]. Since M [∆B1 ] ∩
M∆B1 = {0}, we have uα = 0. Now, if u 6= 0, then α ∈ Ann(u)

and α ∈ ∆B1 , which is not the case. It follows that u = 0, and

{0} = Q′
1 ∩ Q2 ∩ Q′

3 ∩ · · · ∩ Q′
k is an A-primary decomposition. This

completes the proof of the theorem. �

Proposition 4.1. Let Mi (i = 1, . . . , q) be A-modules over Rn = ZAn.

Then

(i) each Mi is an A-module for any Rm = ZAm with m > n and

Am = An ⊕ C, provided that C acts trivially on Mi,

(ii) M = M1 ⊕ · · · ⊕Mq is an A-module over Rn,

(iii) any submodule N of M = M1 ⊕ · · · ⊕Mq is an A-module.

Proof. (i) Let u be a non-zero element of Mi. Then it is easily seen

that if AnnRn(u) =
⋂l

j=1 ∆Bj
with Bj ∈ P(An), then AnnRm(u) =⋂l

j=1 ∆Bj⊕C . Now we check the second condition in the definition of

an A-module. Let D be a subgroup of Am, and let D0 denote the

projection of D onto An. If D0 = {0}, then D ≤ C, and in this case

we have Mi∆D = {0}. Hence Mi is an A-module. If D0 6= {0}, then

Mi∆D = Mi∆D0 and Mi[∆D] = Mi[∆D0 ]. Hence Mi∆D ∩Mi[∆D] =

Mi∆D0 ∩Mi[∆D0 ] = {0}, and we have again that Mi is an A-module.

(ii) Let u = (u1, . . . , uq) be non-zero element of M . Then Ann(u) =⋂q
i=1Ann(Mi), and hence the first condition for A-modules holds. Now

let D be a subgroup of An. Then M∆D = M1∆D ⊕ . . . ⊕Mq∆D and

M [∆D] = M1[∆D] ⊕ . . . ⊕ Mq[∆D]. Since for any i (1 ≤ i ≤ q),

Mi∆D ∩Mi[∆D] = {0}, the second condition holds as well.

(iii) Let 0 6= u ∈ N . Then the first condition holds since it depends

only on u, and not on N . It is clear that the second condition holds as

well. �
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Proposition 4.2. Let M be an A-module over Rn, and C a subgroup

of An. Then any finitely generated ZC-submodule N of M is an A-

module over ZC.

Proof. Let u be a non-zero element ofN . Then AnnZC(u) = AnnRn(u)∩
ZC. Let AnnRn(u) =

⋂l
i=1 ∆Bi

with Bi ∈ P(An). Then ∆Bi
∩ ZC =

∆Bi∩C . Indeed,

ZC/(∆Bi
∩ ZC) ∼= (ZC + ∆Bi

)/∆Bi
∼= ZC/∆Bi∩C .

Since

(
l⋂

i=1

∆Bi
) ∩ ZC =

l⋂
i=1

(∆Bi
∩ ZC) =

l⋂
i=1

∆Bi∩C

and since the subgroup Bi ∩ C is pure in C (because C/(Bi ∩ C) is

torsion-free), the first condition in the definition of an A-module holds.

If D is a subgroup of C, then N∆D ∩ N [∆D] ⊆ M∆D ∩M [∆D], and

hence the second condition holds as well. �

5. Metabelian A-groups

Definition. A group G is called an A -group if the following four

conditions hold.

(i) G is a finitely generated torsion-free metabelian group,

(ii) G has no non-abelian nilpotent subgroups, and hence the Fitting

subgroup Fit(G) is abelian,

(iii) the quotient G/Fit(G) is a free abelian group:

G/Fit(G) ∼= An

for some n, and as a module for ZAn, Fit(G) is an A-module,

(iv) For any finitely generated subgroup H of G, Z(H) ∩H ′ = 1.

It will be convenient to use the following terminology which mimics

our terminology for modules. For an A-group G we define Ass(G), the

associator of G, to be the associator of Fit(G) as an ZAn-module. We

say that an A-group G is a primary A-group if Ass(G) consists of a

single ideal.

Proposition 5.1. Every primary A-group is a ρ-group and, conversely,

every finitely generated ρ-group is an A-group.

Proof. Let G be a primary A-group with Ass(G) = {∆B} where B is

a pure subgroup of An. If B 6= 1, then for any b ∈ B with b 6= 1
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and any u ∈ Fit(G) one has u(1−b) = 1. Let g be an inverse image of

b in G. Then 〈Fit(G), g〉 is a normal subgroup in G, and hence g ∈
Fit(G), contradicting our assumption that b 6= 1. Hence Ass(G) = {0}.
Consequently, Fit(G) is a torsion-free ZAn-module, and hence G is a

ρ-group. For the second part of the proposition, let G be a finitely

generated ρ-group and M = Fit(G). Then G/Fit(G) ∼= An for some

n, and since M is a torsion-free ZAn-module, it is an A-module by

Lemma 4.1. Let H be a finitely generated subgroup of G. If H is

abelian, H ′ = 1, and hence Z(H) ∩H ′ = 1. If H is not abelian, then

Z(H) = 1 since the axiom CT holds in H (see [3, Lemma 3.7]). �

Proposition 5.2. A direct product of finitely many A-groups is an

A-group.

Proof. Let G = G1 × · · · × Gk where G1, . . . , Gk are A-groups. Let

Mi = Fit(Gi) and Ai = Gi/Mi. Then M = M1 × . . . × Mk and

G/M ∼= A1 × . . . × Ak. It is easy to see that conditions (i),(ii),(iv),

and the first part of condition (iii) in the definition of an A-group hold

for G, and the second part of condition (iii) follows from Proposition

4.6. �

Examples. The following are examples of A-groups:

(i) the free abelian groups An,

(ii) the wreath products Wr,s = ArwrAs,

(iii) the free metabelian group F ,

(iv) direct products of the form W = Wr1,s1 × . . .×Wrk,sk
.

The wreath products (ii) are A-groups by Proposition 5.1 because

they are ρ-groups (as we have noticed in Section 2.1). The fact that F

is an A-group follows (in view of the Magnus embedding) immediately

from Proposition 5.3 below, but it can also be easily verified directly.

The groups (iv) are A-groups by Proposition 5.2. They will be referred

to as canonical A-groups.

Proposition 5.3. Any finitely generated subgroup of a canonical A-

group W is itself an A-group.

Proof. Consider the canonical A-group W = W1 × · · · × Wk where

Wi = Wri,si
= Ari

wrAsi
, and let H be a finitely generated subgroup

of W . We need to check that H satisfies conditions (i)-(iv) in the

definition of an A-group. This is obvious for (i),(ii) and (iv), so it
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remains to consider condition (iii). Since the result is obviously true if

H is abelian, we assume that H is not abelian. Let Hi (i = 1, . . . , k)

denote the projection of H onto Wi. Since subgroups of ρ-groups are

themselves ρ-groups, Proposition 5.1 gives that the Hi are A-groups,

and then Proposition 5.2 tells us that H = H1× . . .×Hk is an A-group.

Let M = Fit(H) and A = H/M . Then M is an A-modules over ZA
(since H is an A-group). We claim that Fit(H) = Fit(H) ∩ H. To

verify the claim we need to show that Fit(H) ⊆ Fit(H)∩H (the inverse

inclusion is obvious). Suppose that h ∈ Fit(H). Write h = (h1, . . . , hk)

with hi ∈ Hi, and let ϕi : H → Hi denote the projection of H onto

Hi (i = 1, . . . , k). Since ϕi is a surjective homomorphism, (Fit(H)ϕi) ⊆
Fit(Hi). Hence hi ∈ Fit(Hi) (i = 1, . . . , k) and, consequently, h ∈
Fit(H). This proves our claim that Fit(H) = Fit(H) ∩ H. But then

the quotient A = H/Fit(H) can be identified with a subgroup of A =

H/M , and now Proposition 4.2 tells us that Fit(H) is anA-module. �

The main result of this section is that the converse of Proposition

5.3 is also true.

Theorem 5.1. Any A-group G is isomorphic to a subgroup of a suit-

able canonical group W .

The proof of this theorem will take up most of the rest of this section,

and requires a number of lemmas. In the first of these lemmas we derive

a free presentation for an A-group. To this end, we now introduce

some notation that will also be used in the next section. Consider

the free abelian group An of rank n with free generators a1, . . . , an,

and X be an alphabet that includes the letters x1, . . . , xn. Let α be

an arbitrary non-zero element of the integral group ring ZAn with

supp(α) = {g1, . . . , gs}. Then

α =
s∑

i=1

nigi

where the ni are non-zero integer coefficients, and each of the elements

gi ∈ An has a unique expression

gi = aλi1
1 aλi2

2 · · · aλin
n (λi1, . . . , λin ∈ Z)

in terms of the free generators of An. For any α ∈ ZAn as above, and

any group word w in the alphabet X we define a group word wα in the
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alphabet X by setting

(5.1) wα = (wn1)x
λ11
1 x

λ12
2 ···xλ1n

n (wn2)x
λ21
1 x

λ22
2 ···xλ2n

n · · · (wns)x
λs1
1 x

λs2
2 ···xλsn

n .

Now let G be an A-group. If G is abelian, it has to be free abelian,

and hence it is itself a canonical A-group. We therefore assume from

now on that G is not abelian. Let M = Fit(G), then G/M is a

free abelian group, G/M ∼= An say. Let a1, . . . , an be a system of

free generators for An, x1, . . . , xn their inverse images in G, and let

y1, . . . , ym ∈M be a system of generators for M as a ZAn-module. We

will use multiplicative notation for the module M . Since G′ ≤ M , we

have that, for all pairs xi, xj with 1 ≤ i < j ≤ n, the commutator

[xi, xj] can be written as

(5.2) [xi, xj] = y
αij1

1 y
αij2

2 · · · yαijm
m

for some αijk ∈ ZAn. Furthermore, let

M = 〈y1, . . . , ym | r1 = 1, . . . , rt = 1〉

be a free presentation of M . Here each ri (i = 1, . . . , q) is an element

of the free ZAn-module on y1, . . . , ym, and hence each of the ri has a

unique expression as

(5.3) ri = yβi1
1 yβi2

2 · · · yβim
m

for some βik ∈ ZAn. In the following lemma, the relations in (5.4)

involve group words, which have to be read in accordance with the

definition in (5.1).

Lemma 5.1. The group G admits a free presentation of the form

G =〈x1, . . . , xn, y1, . . . , ym |

[xi, xj] = y
αij1

1 y
αij2

2 · · · yαijm
m (1 ≤ i < j ≤ n),

yβi1
1 yβi2

2 · · · yβim
m = 1 (i = 1, . . . , t),

[yα
i , y

β
j ] = 1 (1 ≤ i, j ≤ m, α, β ∈ ZAn)〉,

(5.4)

where the αijk and the βik are as in (5.2) and (5.3), respectively.

Proof. Let G1 denote the group given by the free presentation (5.4).

It is clear that there is a surjective homomorphism ϕ : G1 → G with

kerϕ ⊆ M1 where M1 denotes the normal closure of y1, . . . , ys in G1.

Moreover, M1ϕ = M . Since there is an inverse homomorphism φ :

M →M1, we have kerϕ = {1}. �
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Since G is an A-group, M is an A-module over ZAn. Let {1} =⋂l
s=1Qs be an A-primary decomposition for the trivial submodule {1}

of M , i.e. the modules Ms = M/Qs (s = 1, . . . , l) are primary A-

modules, and let Ass(Ms) = {∆Bs} with Bs ∈ P(An).

Lemma 5.2. With the notation introduced above, the centre Z(G) is

non-trivial if and only if there exists an s0 (1 ≤ s0 ≤ l) such that

Bs0 = An.

Proof. Since G is a A-group, it is easily verified that the centre of G is

precisely M [∆An ], and the lemma follows. �

Now let πs (1 ≤ s ≤ l) denote the natural projection of M onto Ms.

Then

π : M →M1 × · · · ×Ml u 7→ (uπ1, . . . , uπl)

(u ∈ M) is an injective homomorphism of ZAn-modules. Since the

Ms are finitely generated torsion-free Z(An/Bs)-modules, we can find

injective homomorphisms νs : Ms → Ts where the Ts are finitely gen-

erated free Z(An/Bs)-modules. This is a well-known fact (a typical

instance of folklore) from commutative algebra, which can easily be

established by working in the vector space obtained by tensoring Ms

with the field of fractions of the domain Z(An/Bs). It is clear that

the Ts may be regarded as a ZAn-module (with Bs acting trivially) ,

and we will adopt this point of view. Then νs is a homomorphism of

ZAn-modules. We write ϕs for the composite of πs and νs:

ϕs : M → Ts u 7→ uπsνs

Let W̃s denote the semidirect product of Ts and A. The groups W̃i are

not necessarily wreath products, but they are in a certain sense close

to being wreath products. Let W̃ = W̃1 × · · · × W̃l. Our next goal is

to derive an embedding of G into W̃ . We set

δ = a1 + · · ·+ an − n ∈ Z(An).

First assume that Z(G) = 1. We start by constructing an embedding

ψ of M into the module T1 × · · · × Tl ⊆ W̃ . For each s with 1 ≤ s ≤ l

we define a homomorphism ψs : M → Ti by setting

uψs = (uϕs)
δ

for all u ∈M , and then we put

uψ = (uψ1, . . . , uψl).
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Lemma 5.3. The homomorphism ψ is an embedding of M into T1 ×
. . .× Tl.

Proof. If u ∈ kerψ then (uϕs)
δ = 1 for all s (1 ≤ s ≤ l), and hence

(uπs)
δ = 1 for all s. But since Bs 6= An, it follows that δ /∈ ∆Bs . Thus

(uπs)
δ = 1 implies uπs = 1, and it follows that kerψ = {1}. �

Now we extend the embedding ψ to an embedding of G into W̃ . For

each s with 1 ≤ s ≤ l and each i with 1 ≤ i ≤ n we set

xiθs = (ai, (
n∏

k=1

[xi, xk])ϕs) ∈ W̃s,

and for all u ∈M we set

uθs = (1, uψs) ∈ W̃s.

Lemma 5.4. The map θs extends to a homomorphism of G into W̃s

(which will also be denoted by θs).

Proof. We need to verify that θs respects the defining relations (5.4).

This is obvious for the relations involving only y1, . . . , ym, and so it

remains to check the relations involving the commutators [xi, xj]. Using

standard commutator identities we find

(xiθs)
−1(xjθs)

−1xiθsxjθs

= (1, (
n∏

k=1

[xj, xk])ϕ
(1−ai)
s (

n∏
k=1

[xi, xk])ϕ
(aj−1)
s )

= (1, ((
n∏

k=1

[xj, xk]
(1−ai))(

n∏
k=1

[xi, xk])
(aj−1))ϕs)

= (1, (
n∏

k=1

[xj, xk, xi][xk, xi, xj])ϕs)

= (1, (
n∏

k=1

[xj, xi, xk]ϕs)

= (1, [xi, xj]
P n

k=1(xk−1)ϕs)

= (1, [xi, xj]
δϕs)

= (1, [xi, xj]ψs)

= (y1θs)
βi1(y2θs)

βi2 · · · (ymθs)
βim

as required. �
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Using the homomorphisms θs we now define a homomorphism

θ : G→ W̃

by setting

gθ = (gθ1, . . . , gθl) ∈ W̃1 × · · · × W̃l = W̃

for all g ∈ G.

Lemma 5.5. The homomorphism θ is an embedding of G into W̃ .

Proof. Since the restriction of θ to M = Fit(G) coincides with ψ, this

follows by Lemma 5.3. �

Now we consider the case where Z(G) 6= 1. Then we have Z(G) =

M [∆An ] by Lemma 5.2, and ∆An ∈ Ass(G), say ∆An = ∆B1 . Then

M [∆An ] =
⋂l

s=2Qs by Lemma 4.2. In this case we construct Q1 in the

following special way. We put Q1 = Is(G′), where Is(G′) is the isolator

ofG′ inG . SinceG′∩Z(G) = 1 inG, we have Is(G′)∩Z(G) = {1} inM .

Now, if we putQ1 = Is(G′), then
⋂l

i=1Qi = Q1∩Z(G) = {1}. Moreover

G/ Is(G′) is a torsion-free abelian group. Consequently, {1} =
⋂l

i=1Qi

is an A-primary decomposition for the trivial submodule {1} of M .

Now we define an embedding θ : G → W̃ similar to the centre-free

case, but with one essential modification. With ϕs, ψs (s = 1, . . . , l)

as above we leave θ2, . . . , θl the same as before, but we now define θ1

by setting

xiθ1 = (ai, (
n∏

k=1

[xi, xk])ϕ1) ∈ W̃1

(that is still exactly as in the centre-free case), and for all u ∈ M we

set

uθ1 = (1, uϕ1) ∈ W̃1.

We claim that θ1 extends to a homomorphism from G to W̃1, and as in

the proof of Lemma 5.4 we need to check that θ1 respects the defining

relations (5.4). By repeating the calculations from the proof of Lemma

5.4 line by line, we find that

(xiθ1)
−1(xjθ1)

−1xiθ1xjθ1 = (1, [xi, xj]
δϕ1)

Since G′ is contained in Q1, we have [xi, xj]ϕ1 = 1, and hence

(1, [xi, xj]
δϕ1) = (1, [xi, xj]ϕ1) (= 1),
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which is all we need for the proof of Lemma 5.4 to go through. Thus

we have again a homomorphism θ : G→ W̃ . This time the restriction

to M is given by

uθ|M = (uϕ1, uψ2, . . . , uψl) ∈ T1 × T2 × . . . Tl,

and an argument similar to that of Lemma 5.3 shows that this is in-

jective. Hence so is θ, and thus we have got the required embedding of

G into W̃ .

Finally, consider the groups W̃s (s = 1, . . . , l). Recall that W̃s is the

semidirect product of An and and a finitely generated free Z(An/Bs)-

module, which was regarded as a Z(An)-module with Bs acting triv-

ially. Hence the subgroup Bs is central in W̃s and the quotient Ws =

W̃s/Bs is the semidirect product of An/Bs and a finitely generated

free Z(An/Bs)-module. In other words, Ws is a wreath product of

two free abelian groups of finite rank. Put W = W1 × . . . ×Wl. Let

ξs : W̃s → Ws denote the natural homomorphism from W̃s onto Ws,

and let ξ : W̃ → W be the induced homomorphism from W̃ onto W .

It is easily seen that Gθ ∩ ker ξ = {1}. Indeed, since ker ξ is a central

subgroup, Gθ ∩ ker ξ ⊆ Z(Gθ). If Z(G) = 1, the result is clear. If

Z(G) 6= 1, then ker ξ ∩ θ(G) ⊆ W̃1 = A⊕ T1, where T1 is a free abelian

group of finite rank. Since ker ξ1 = A and M [∆An ] ⊆ T1, it follows that

Gθ∩ker ξ = 1. Hence θξ is an embedding of G into W . This completes

the proof of Theorem 5.1. �

The key technical result of [3] is a special case of Theorem 5.1.

Corollary 5.1. ([3, Lemma 3.8]) Any finitely generated ρ-group is iso-

morphic to a subgroup of a wreath product Wr,s for some suitable natural

numbers r and s.

Proof. Indeed, if G is non-abelian and M = Fit(G), then Ass(M) =

{0}, and the corollary follows from the proof of Theorem 5.1. If G is

abelian, the assertion is obvious. �

Another consequence of our embedding theorem is the following.

Corollary 5.2. Any finitely generated subgroup of an A-group is itself

an A-group.

Proof. This follows immediately from Theorem 5.1 and Proposition

5.3. �
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6. Defining quasi-identities for the quasivariety

generated by a free metabelian group

In this Section we exhibit a system of quasi-identities that, as we will

prove later, determines the quasivariety generated by a non-cyclic free

metabelian group. Our system consists of six sets of quasi-identities.

The first four of them are straightforward.

The first set consists of a single identity,

(6.1) ∀x, y, z, t ([[x, y], [z, t]] = 1),

which determines the variety of all metabelian groups.

The second set is a system of quasi-identities defining the quasivari-

ety of all torsion-free groups:

(6.2) ∀x (xn = 1 =⇒ x = 1) (n ∈ N)

The third set consists again of a single quasi-identity that determines

the quasivariety of all groups in which every nilpotent subgroup is

abelian:

(6.3) ∀x, y ([x, y, x] = 1 ∧ [x, y, y] = 1 =⇒ [x, y] = 1)

The fourth set is a system of quasi-identities that, if it holds for some

torsion-free metabelian group G, guarantees that the Fitting subgroup

Fit(G) is isolated in G:

(6.4) ∀x, y ([xn, (xn)y] = 1 =⇒ [x, xy] = 1) (n ∈ N)

The fifth set of quasi-identities requires some preliminary discussion.

For any natural number n, consider the free abelian group An with free

generators a1, . . . , an and the integral group ring Rn = ZAn. Let α be

a non-zero element of the augmentation ideal ∆An , and let C(α) be the

contents of α as defined in Section 2.2. Using the contents C(α) we

now define det(α), the determinant of α, by setting

det(α) =
∏

a∈C(α)

(1− a).

Recall that Rad(α) denotes the radical of α, that is the smallest radical

ideal of R containing α. We know that Rad(α) is a finitely generated

ideal in Rn. Let β1, . . . , βq be generators for that ideal:

Rad(α) = 〈β1, . . . , βq〉 .
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Note that, by Proposition 3.2, there is an effective algorithm for finding

β1, . . . , βq for any given α. Finally, recall the definition (5.1) of wα,

where w is a word in the language of group theory and α ∈ Rn.

Now we are ready to introduce the fifth group of quasi-identities.

It consists of an infinite series of sets of quasi-identities, one for each

natural number n, which refers to Rn, and each of these sets consists

in its turn of three infinite subsets as follows.

Firstly, for all non-zero α ∈ Rn with ε(α) 6= 0, we write

(6.5) ∀ y, z, x1, . . . , xn ([y, z]α = 1 =⇒ [y, z] = 1).

Secondly, for all non-zero α ∈ Rn with ε(α) = 0, we write

(6.6) ∀ y, z, x1, . . . , xn ([y, z]α = 1 =⇒ [y, z]det(α) = 1).

Thirdly, for all non-zero α ∈ Rn with ε(α) = 0 and Rad(α) =

〈β1, . . . , βq〉 , we write

(6.7) ∀ y, z, x1, . . . , xn ([y, z]α = 1 =⇒ [y, z]βi = 1)

where i = 1, 2, . . . , q.

The sixth and last set of quasi-identities is again more straightfor-

ward. It guarantees that for any finitely generated subgroup, centre

and commutator subgroup have trivial intersection. For any natural

number n, we write

(6.8)

∀x1, . . . , xn, y1, . . . , yn, z (z =
n∏

i=1

[xi, yi]∧
n∧

i=1

([z, xi] = [z, yi] = 1 ⇒ z = 1).

Let Q denote the system consisting of all the quasi-identities (6.1)-

(6.8).

Definition. A group is called a q-group if it satisfies all quasi-identities

of the system Q.

Notice that the system Q is recursive. This is obvious for (6.1)-(6.6)

and for (6.8), and for (6.7) it follows from Proposition 3.2. In the final

section of this paper we will prove that that the class of all q-groups

coincides with the quasivariety qvar(F ). In other words, Q is a defining

system of quasi-identities for this quasivariety (see Corollary 7.1).

Before we go any further, we wish to point out that one set of axioms

in Q is redundant in that it is a consequence of the others.
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Remark 6.1. The quasi-identities (6.4) are consequences of the quasi-

identities (6.1)-(6.3), (6.5) and (6.6) in Q.

Proof. Let G be a group satisfying the quasi-identities (6.1)-(6.3) and

(6.5)-(6.6), and suppose that [gn, (gn)h] = 1 for some g, h ∈ G and some

natural number n. We need to show that [g, gh] = 1. Using standard

commutator identities we obtain

[gn, (gn)h] = [gn, gn[gn, h]] = [gn, h]1−gn

where g is the image of g in the factor group G/Fit(G). Now observe

that det(1−xn) = 1− b where b is the highest possible root of x. Since

[gn, h]1−gn
= 1, the quasi-identity (6.6) gives that [gn, h]1−a = 1 where

g ∈ 〈a〉. But this of course implies that [gn, h]1−g = 1. Since

[gn, h] = [g, h]1+g+···+gn−1

,

we have, in fact, that

[g, h](1+g+···+gn−1)(1−g) = 1,

so

[g, h](1−g)(1+g+···+gn−1) = [g, [g, h]]1+g+···+gn−1

= 1

Since ε(1+x+ · · ·+xn−1) = n 6= 0, the quasi-identity (6.5) now implies

that [g, [g, h]] = 1. But

[g, [g, h]] = [g, g[g, h]] = [g, gh].

Hence [g, gh] = 1 as required. �

In view of the above remark, the quasi-identities (6.4) could be

deleted from the system Q, but for technical reasons (see, e.g., Lemma

6.1) we find it convenient to keep it in there.

Lemma 6.1. Let G be a group satisfying the quasi-identities (6.1)-

(6.4). Then

(i) G is a torsion-free metabelian group,

(ii) the Fitting subgroup Fit(G) is abelian,

(iii) the quotient G/Fit(G) is a torsion-free abelian group.

Proof. Any group satisfying (6.1) and (6.2) is plainly metabelian and

torsion-free, whence (i). Moreover, for any group G, the Fitting sub-

group Fit(G) is locally nilpotent. If Fit(G) is not abelian, it contains

a 2-generator non-abelian nilpotent group of class two, which is, how-

ever, impossible if G satisfies (6.3). This gives (ii). For any metabelian
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group G, Fit(G) contains the commutator subgroup G′, and hence the

quotient G/Fit(G) is abelian. In order to show that this quotient is

also torsion-free, suppose there exists an element x ∈ G such that

xl ∈ Fit(G). Then we have that (xl)y ∈ Fit(G) for all y ∈ G. Since

Fit(G) is abelian, we get that [xl, (xl)y] = 1, and then (6.4) implies that

[x, xy] = 1. The latter gives [x, y, x] = 1 for all y ∈ G. For y ∈ Fit(G)

we also have [x, y, y] = 1, and then (6.3) yields that [x, y] = 1 for all

y ∈ Fit(G). But then 〈Fit(G), x〉 is an abelian normal subgroup of G,

which finally gives x ∈ Fit(G). Hence G/Fit(G) is torsion-free, and

this completes the proof of the lemma. �

Lemma 6.2. Any finitely generated q-group is an A-group.

Proof. Let G be a finitely generated q-group. In view of Lemma 6.1 and

the fact that Z(H) ∩H ′ = 1 for any finitely generated subgroup H in

G, it is sufficient to show that Fit(G) is an A-module over the integral

group ring of G/Fit(G). We may assume that G is non-abelian that is

Fit(G) ≥ G′ 6= 1. Let G/Fit(G) ∼= An and R = ZAn. We first consider

a non-trivial element of Fit(G) that is a single commutator. Let u =

[y, z] ∈ Fit(G) with u 6= 1 and y, z ∈ G, and suppose that Ann(u) 6=
{0}. Let α ∈ Ann(u) with α 6= 0. Then the quasi-identity (6.7)

implies that Rad(α) ≤ Ann(u). If Ann(u) = Rad(α), the annihilator

has the required form (see Remark 4.1). Suppose then that this is

not the case, and let β ∈ Ann(u) \ Rad(α). Then, by Corollary 3.1

and the proof of Proposition 3.1, there exists an element γ such that

Rad(α, β) = Rad(γ) and γ = α − βk where k is a sufficiently large

positive integer. Then γ ∈ Ann(u), and hence Rad(γ) ≤ Ann(u). If

Rad(γ) 6= Ann(u), we may repeat the above procedure to produce a

chain of ideals

Rad(α) ≤ Rad(γ) ≤ Rad(γ1) ≤ · · · ≤ Ann(u).

Since R is Noetherian, we eventually get that Ann(u) coincides with

the radical of one of its elements, and hence the annihilator is of the

required form.

Now let u ∈ Fit(G) be an arbitrary non-trivial element. Suppose

that the free abelian group An is freely generated by a1, . . . , an and let

x1, . . . , xn ∈ G be inverse images of these free generators in G. Then

G = 〈x1, . . . , xn,Fit(G)〉 . We distinguish two cases. First assume that

[u, xi] = 1 for i = 1, . . . , n. Then u ∈ Z(G), and hence Ann(u) = ∆An .



28 VLADIMIR REMESLENNIKOV AND RALPH STÖHR

If that is not the case, there exists an xi such that [u, xi] 6= 1. Let ui

denote the commutator ui = [u, xi] (i = 1, . . . , n). If α ∈ Ann(u), then

α ∈ Ann(ui) (i = 1, . . . , n). Consequently, Ann(u) ⊆
⋂n

i=1 Ann(ui).

We have that

(6.9)
n⋂

i=1

Ann(ui) = (∆An : Ann(u))

Assume that Ann(u) 6=
⋂n

i=1 Ann(ui), and let β ∈
⋂n

i=1 Ann(ui) \
Ann(u). Then, since at least one of the elements ui is non-zero, we

have that β ∈ ∆An and uβ 6= 1. Since β ∈ ∆An , uβ ∈ G′. On

the other hand, in view of (6.9), uβ(xi−1) = 1 for all i = 1, . . . , n,

and, consequently, uβ ∈ Z(G). This gives uβ ∈ Z(G) ∩ G′ and

so uβ = 1, that is β ∈ Ann(u), which contradicts our assumptions.

Hence Ann(u) =
⋂n

i=1 Ann(ui), and, consequently, it has the required

form. �

Lemma 6.3. The free metabelian group F is a q-group.

Proof. Let F be a free metabelian group of rank m > 1. Then Fit(G) =

F ′, F/Fit(F ) ∼= Am, and Z(F ) = 1. It is clear that F satisfies the

quasi-identities (6.1)-(6.4). If H is a non-abelian subgroup of F , then

Z(H) = 1 since H satisfies the axiom CT . Consequently (6.8) holds

for F .

It remains to check the axioms (6.5)-(6.7). First of all, F satisfies

the quasi-identities (6.5) since F ′ is a torsion-free module for Z(F/F ′)

(see Section 2.1).

Now suppose that (6.6) is violated on the elements y = h1, z =

h2, x1 = f1, . . . , xn = fn of F . Then [h1, h2] 6= 1. Recall that the α

in (6.6) is an element of the augmentation ideal of the group ring Rn

of the free abelian group An on free generators a1, . . . , an for some n,

say α =
∑
λigi ∈ ∆An with gi = a

δi1
1 a

δi2
2 . . . a

δin
n . We write f 1, . . . , fn

for the natural images of f1, . . . fn in F/F ′, and α(f) for the element

of Z(F/F ′) obtained from α by the substitution ai 7→ f i. Since F ′

is a torsion-free Z(F/F ′)-module, α(f) = 0. Consequently, there is

at least one pair of indices (j1, j2) j1 6= j2 such that λj1 and λj2 have

opposite signs and gj1(f) ≡ gj1(f) mod F ′. Furthermore, the root b of

the element gj1g
−1
j2

is, by definition, contained in C(α) (see Section 3).

Hence 1 − b divides det(α). But [h1, h2]
b(f)−1 = 1 in F , contradicting

our assumptions.
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Finally, assume that (6.7) is violated on the elements y = h1, z =

h2, x1 = f1, . . . , xn = fn of F . Then [h1, h2] 6= 1 and α(f) = 0. Let φ

be the homomorphism from An to F/F ′ such that aiφ = f i and let B

denote the kernel of φ. Then α ∈ ∆B. Consequently (see Section 3), the

βi (i = 1, . . . , q) are also contained in ∆B, and hence [h1, h2]
βi(f) = 1

in F . This completes the proof of the lemma. �

7. The main results

In this Section F denotes a non-cyclic free metabelian group of finite

rank. Let U denote the system of universal sentences consisting of the

quasi-identities (6.1), (6.2), (6.5) and (6.6) from Section 6, and the

axiom CT (see Section 2.1).

Definition. A group is called a u-group if it satisfies all axioms of the

system U .

First of all we note that F is a u-group. It satisfies the quasi-identities

in U by Lemma 6.3, and the fact that CT holds in F is an immedi-

ate consequence of Malcev’s result on centralizers in F (see Section

2.1). We attribute our first result to O. Chapuis, who proved a similar

Theorem in his paper [3]. However, Theorem A below is a substantial

modification of Chapuis’ original result as we use a different system of

universal sentences. We also feel that our proof, in particular in its

main ingredient Corollary 5.1 (the counterpart of Lemma 3.8 in [3]) is

more direct and technically less involved than the original proof in [3].

Theorem A . (O. Chapuis) For a finitely generated group G, the

following statements are equivalent.

(i) G is a subgroup of a wreath product Wr,s for some positive integers

r, s.

(ii) G ∈ ucl(F ).

(iii) G is a u-group.

(iv) G is a ρ-group.

Proof. For the implication (i)=⇒(ii) we refer to Chapuis’ paper [3,

Lemma 3.1], where he proves that Wr,s ∈ ucl(F ). The implication

(ii)=⇒(iii) is an immediate consequence of the above mentioned fact

that F is a u-group, which gives that any G ∈ ucl(F ) is a u-group.

Now we turn to the implication (iii)=⇒(iv). Clearly, the conditions (i)
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and (ii) in the definition of a ρ-group hold for any u-group. It there-

fore remains to show that condition (iii) holds as well that is, for any

u-group G, Fit(G) is a torsion-free module over the integral group ring

of G/Fit(G). Let An = G/Fit(G) and let Rn = ZAn. If G is abelian

there is nothing to prove, so assume that G′ 6= 1. Let f, g ∈ G such

that [f, g] 6= 1. We will show that Ann([f, g]) = {0}. Let α ∈ ZAn with

α 6= 0 such that [f, g]α = 1. Then (6.5) gives that ε(α) = 0, and then

(6.6) implies that [f, g]det(α) = 1. This gives, in turn, that there exists

an u ∈ G′ (u 6= 1) such that u(1−b) = 1, where b ∈ C(α). Let g be an

inverse image of b under the natural homomorphism G → An. Then

u(1−b) = 1 gives [u, g] = 1. But we also have [u, v] = 1 for all v ∈ Fit(G).

Now the axiom CT yields that g commutes with all elements in Fit(G).

But then g ∈ Fit(G), which is, by construction, impossible. Now let

u ∈ Fit(G) be an arbitrary non-trivial element. Let x1, . . . , xn ∈ G as

in the proof of Lemma 6.2. If [u, xi] = 1 for all xi, then u is central, and

CT implies that G is abelian, contradicting our original assumption on

G. Hence there exists an xi such that [u, xi] 6= 1. Now if uα = 1, then

u(1−ai)α = 1, which is the same as to say that [u, xi]
α = 1. But now α

annihilates a single commutator, and we have already shown that this

implies α = 0. This establishes the implication (iii)=⇒(iv). For the

final implication (iv)=⇒(i) we refer to Corollary 5.1.

�

Now we are ready for the main result of this paper.

Theorem B. For a finitely generated group G, the following statements

are equivalent.

(i) G is a subgroup of a direct product Wr1,s1 × . . .×Wrk,sk
for some

positive integers r1, s1, . . . , rk, sk,

(ii) G ∈ qvar(F ).

(iii) G is a q-group.

(iv) G is an A-group.

Proof. By Theorem A, Wr,s ∈ ucl(F ), and since ucl(F ) ⊆ qvar(F ) and

qvar(F ) is closed under taking subgroups and finite direct products,

this yieds the implication (i)=⇒(ii). The implication (ii)=⇒(iii) holds

by Lemma 6.3 which tells us that F , and hence any group in qvar(F ), is

a q-group. Lemma 6.2, which says that any finitely generated q-group is

an A-group, gives the implication (iii)=⇒(iv). Finally, the implication
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(iv)=⇒(i) has been established in Theorem 5.1. This completes the

proof of Theorem B. �

Our concluding result is an immediate consequence of Theorem B.

Corollary 7.1. The system Q is a defining system of quasi-identities

for the quasivariety qvar(F ).
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